古菌
古菌(學名:Archaea)係生物分類入面一個域,有部份細菌嘅特質,譬如冇細胞核同膜結合細胞器,同時又有一啲真核生物嘅特徵,譬如存在重複序列同核小體。
![]() | ||
---|---|---|
![]() 古菌
| ||
物種分類 | ||
|
生物分類學 |
---|
分類階級 |
域 | 界 | 門 | 綱 目 | 科 | 屬 | 種 |
二名法 |
三域系統 |
非細胞生物 |
細胞生物 |
古菌喺大細同埋形狀方面通常都似細菌,雖然有啲嘅形狀好唔同,例如 Haloquadratum walsbyi 嘅扁平正方形細胞噉。[1] 就算係噉,古菌都擁有基因同埋幾條代謝途徑,呢啲嘢同真核生物嘅更加接近,尤其係參與轉錄同轉譯嘅酶。古菌生物化學嘅其他方面就好獨特,例如佢哋喺細胞膜入面,依靠醚脂,[2] 包括 古菌醇。古菌用嘅能量來源比真核生物更加多樣化,範圍由有機化合物(例如糖)到氨、金屬離子甚至氫氣都有。耐鹽嘅鹽桿菌綱用陽光做能量來源,而其他古菌物種就固定碳(自營),但係同藍菌唔同,冇已知嘅古菌物種可以同時做到晒兩樣嘢。古菌透過無性生殖嚟繁殖、分裂,或者出芽;同細菌唔同,冇已知嘅古菌物種會形成內孢子。最初觀察到嘅古菌係極端微生物,生活喺極端環境入面,例如溫泉同埋鹽湖,冇其他生物喺度。改良咗嘅分子檢測工具,令到科學家喺幾乎每一個棲息地都發現到古菌,包括泥土、[3] 海洋,同埋沼澤地。古菌喺海洋入面特別多,而浮游生物入面嘅古菌,可能係地球上面數量最多嘅生物群體之一。
古菌係地球生命嘅主要組成部分。佢哋係所有生物微生物群系嘅一部分。喺人類微生物組入面,佢哋喺腸道、口腔同皮膚上面都好重要。[4] 佢哋形態、代謝同地理位置嘅多樣性,令到佢哋可以扮演多重生態角色:碳固定;氮循環;有機化合物嘅轉化;同埋維持微生物嘅共生同互營群落,例如。[3][5] 冇已知嘅古菌係病原體或者寄生生物;好多都係互利共生生物或者共棲生物,例如 產甲烷菌(產生甲烷嘅菌),佢哋棲息喺人類同反芻動物嘅胃腸道入面,佢哋龐大嘅數量有助於消化。產甲烷菌用於生物氣體生產同污水處理,而生物技術就利用嚟自極端微生物古菌嘅酶,呢啲酶可以承受高溫同埋有機溶劑。
發現同埋分類
編輯
早期概念
編輯喺 20 世紀嘅大部分時間入面,原核生物都俾人當做係單一嘅生物群體,並且根據佢哋嘅生物化學、形態同埋代謝嚟分類。微生物學家嘗試根據微生物細胞壁嘅結構、佢哋嘅形狀,同埋佢哋消耗嘅物質嚟分類微生物。[6] 喺 1965 年,埃米爾·祖克erkandl 同埋 萊納斯·鮑林[7] 反而提議用唔同原核生物基因嘅序列,嚟搞清楚佢哋之間嘅關係。呢種系統發生方法係而家主要用嘅方法。[8]
古菌喺 1977 年首次俾 卡爾·沃斯 同 喬治·福克斯 從細菌入面分開分類,根據嘅係佢哋嘅核糖體RNA (rRNA) 基因。[9] (嗰陣時只係得產甲烷菌係已知嘅)。佢哋將呢啲群體叫做古細菌同真細菌嘅 始原界,雖然其他研究人員將佢哋當做界或者亞界。沃斯同福克斯俾出咗古細菌作為一個獨立「血統」嘅第一個證據:1. 細胞壁入面冇肽聚糖,2. 兩種唔尋常嘅輔酶,3. 16S核糖體RNA 基因測序嘅結果。為咗強調呢個差異,沃斯、奧托·坎德勒 同埋 馬克·惠利斯 後嚟提議將生物重新分類做三個自然域,叫做三域系統:真核域、細菌域 同埋 古菌域,[10] 喺而家叫做 沃斯革命 嘅嘢入面。[11]
archaea 呢個詞語嚟自古希臘文 ἀρχαῖα,意思係「古老嘅嘢」,[12] 因為古菌域嘅第一個代表係產甲烷菌,而且佢哋嘅代謝俾人認為反映咗地球原始嘅大氣層同埋生物嘅古老性,但係隨住新嘅棲息地俾人研究,更多嘅生物俾人發現。極端嗜鹽[13] 同埋超嗜熱微生物[14] 都包括喺古菌入面。好耐以嚟,古菌都俾人睇成係極端微生物,只係存在喺極端棲息地入面,例如溫泉同埋鹽湖,但係到咗 20 世紀尾,古菌喺非極端環境入面都俾人揾到。今日,佢哋已知係一大類多樣化嘅生物,廣泛分佈喺成個大自然。[15] 對古菌嘅重要性同普遍性嘅呢種新認識,嚟自使用聚合酶鏈鎖反應 (PCR) 嚟檢測環境樣本(例如水或者泥土)入面嘅原核生物,方法係擴增佢哋嘅核糖體基因。呢個方法可以檢測同識別一啲重未喺實驗室培養過嘅生物。[16][17]
分類
編輯古菌,同埋總體嚟講原核生物嘅分類,係一個快速發展而且有爭議嘅領域。而家嘅分類系統旨在將古菌組織成一啲群體,呢啲群體共享結構特徵同埋共同祖先。[18] 呢啲分類主要依靠核糖體RNA基因嘅序列,嚟揭示生物之間嘅關係(分子系統發生學)。[19] 大部分可以培養同埋研究得好深入嘅古菌物種,都係屬於兩個主要門嘅成員,廣古菌門 同埋 泉古菌門(以前嘅 Crenarchaeota)。其他群體已經初步建立咗,例如奇特嘅物種 Nanoarchaeum equitans ——喺 2003 年發現,並且俾人分配咗佢自己嘅門,納米古菌門。[20] 一個新嘅門 科爾古菌門 都已經俾人提出,包含一小群唔尋常嘅嗜熱物種,佢哋同時具有兩個主要門嘅特徵,但係同泉古菌門嘅關係最密切。[21][22] 其他檢測到嘅古菌物種,同呢啲群體嘅關係都好疏遠,例如 古菌里士滿礦山嗜酸納米生物 (ARMAN,包括 微古菌門 同埋 Parvarchaeota),佢哋喺 2006 年發現[23] 而且係已知最細嘅生物之一。[24]
一個超門 – "TACK"(同義詞:Thermoproteati 界)– 包括 Thaumarchaeota(而家嘅 亞硝化球菌門)、艾格古菌門、泉古菌門(而家嘅 泉古菌門),同埋 科爾古菌門,喺 2011 年俾人提出,認為佢哋同真核生物嘅起源有關。[25] 喺 2017 年,新發現同新命名嘅 "Asgard"(同義詞:Promethearchaeati 界)超門俾人提出,認為佢哋同原始真核生物嘅關係更加密切,而且係 Thermoproteati/"TACK" 嘅姊妹群。[26]
喺 2013 年,超門 "DPANN"(同義詞:Nanobdellati 界)俾人提出,用嚟將 納米古菌門、納米鹽古菌門、古菌里士滿礦山嗜酸納米生物 (ARMAN,包括 微古菌門 同埋 帕爾瓦古菌門),同埋其他類似嘅古菌歸類埋一齊。呢個古菌超門包含至少 10 個唔同嘅譜系,並且包括一啲細胞同基因組大細極細,而且代謝能力有限嘅生物。因此,Nanobdellati/"DPANN" 可能包括一啲強制性依賴共生互動嘅成員,甚至可能包括新型寄生生物。不過,其他系統發生分析發現 Nanobdellati/"DPANN" 唔形成單系群,而且表面上嘅分組係由 長枝吸引 (LBA) 造成嘅,暗示所有呢啲譜系都屬於廣古菌門。[27][28]
系統發生樹
編輯根據 Tom A. Williams et al. 2017,[29] Castelle & Banfield (2018)[30] 同埋 GTDB release 09-RS220 (2024 年 4 月 24 號):[31][32][33]
Tom A. Williams et al. 2017[29] 同 Castelle & Banfield 2018[30] | 09-RS220 (2024 年 4 月 24 號)[31][32][33] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
物種概念
編輯將古菌分類做物種都係有爭議嘅。恩斯特·邁爾 嘅 物種 定義——一個生殖上隔離嘅、可以雜交嘅生物群體——唔適用,因為古菌只係進行無性繁殖。[35]
古菌譜系之間顯示出高水平嘅水平基因轉移。一啲研究人員認為,如果基因組高度相似,而且同基因組關係較遠嘅細胞之間嘅基因轉移唔頻繁,就可以將個體分組到類似物種嘅種群入面,就好似喺 鐵細菌屬 入面噉。[36] 另一方面,喺 鹽紅菌屬 入面嘅研究發現,同關係較遠嘅種群之間有顯著嘅基因轉移,限制咗呢個標準嘅適用性。[37] 一啲研究人員質疑,呢啲物種命名係咪真係有實際意義。[38]
而家對於古菌遺傳多樣性嘅認識係零碎嘅,所以物種嘅總數無法準確估計。[19] 對門嘅數量嘅估計範圍由 18 到 23 個不等,其中只有 8 個門有代表俾人培養同埋直接研究過。好多呢啲假設嘅群體都係從單一嘅 rRNA 序列得知,所以多樣性嘅程度仍然係唔清楚嘅。[39] 呢種情況喺細菌入面都見到;好多未培養嘅微生物喺特徵描述方面都有類似嘅問題。[40]
原核生物門
編輯有效門
編輯臨時門
編輯以下嘅門已經俾人提出,但係根據細菌學命名法,重未有效發佈(包括嗰啲具有 Candidatus 狀態嘅門):
"Candidatus 謎古菌門"
"Candidatus 艾格古菌門"
"Candidatus 高古菌門"
"Candidatus 阿斯嘉德古菌門"
"Candidatus 深海古菌門"
"Candidatus 布羅克古菌門"
"Candidatus 異養古菌門"
"Candidatus 地古菌門"
"Candidatus 冥古菌門"
"Candidatus 冥府古菌門"
"Candidatus 鹽古菌門"
"Candidatus 海姆達爾古菌門"
"Candidatus 海拉古菌門"
"Candidatus 休伯古菌門"
"Candidatus 熱液古菌門"
"Candidatus 科爾古菌門"
"Candidatus 洛基古菌門"
"Candidatus 瑪瑪古菌門"
"Candidatus 火星古菌門"
"Candidatus 微古菌門"
"Candidatus 納米古菌門"
"Candidatus 納米鹽古菌門"
"Candidatus 哪吒古菌門"
"Candidatus 尼約德古菌門"
"Candidatus 奧丁古菌門"
"Candidatus 帕斯古菌門"
"Candidatus 帕爾瓦古菌門"
"Candidatus 熱原體門"
"Candidatus 索爾古菌門"
"Candidatus 翁丁古菌門"
"Candidatus 費爾斯特拉特古菌門"
"Candidatus 沃斯古菌門"
起源同演化
編輯地球年齡大約係 45.4 億年。[45][46][47] 科學證據表明,生命喺地球上面開始至少喺 35 億年前。[48][49] 最早嘅地球生命證據係石墨,喺西格陵蘭發現嘅 37 億年歷史嘅變質沉積岩入面,揾到佢係生物成因嘅。[50] 同埋喺 西澳洲 發現嘅 34.8 億年歷史嘅砂岩入面,揾到嘅微生物墊 化石。[51][52] 喺 2015 年,喺西澳洲 41 億年歷史嘅岩石入面,揾到可能係生物物質嘅遺骸。[53][54]
雖然可能嘅原核細胞化石可以追溯到幾乎 35 億年前,但係大多數原核生物都冇獨特嘅形態,而且化石形狀唔可以用嚟將佢哋識別為古菌。[55] 相反,獨特脂嘅化學化石更加有參考價值,因為呢啲化合物唔會喺其他生物入面出現。[56] 一啲出版物表明,古菌或者真核生物嘅脂質遺骸,存在喺 27 億年歷史嘅頁岩入面,[57] 雖然呢啲數據之後受到質疑。[58] 呢啲脂質喺更古老嘅岩石入面都檢測到,嚟自西格陵蘭。最古老嘅呢啲痕跡嚟自 伊蘇阿地區,呢個地區包括地球已知最古老嘅沉積物,形成於 38 億年前。[59] 古菌血統可能係地球上面存在嘅最古老血統。[60]
沃斯認為,細菌、古菌同真核生物代表咗唔同嘅血統,佢哋喺早期從一個祖先生物群落入面分化出嚟。[61][62] 一種可能性[62][63] 係呢個過程喺細胞演化之前發生,嗰陣時缺乏典型嘅細胞膜,令到橫向基因轉移冇限制,而三個域嘅共同祖先,係通過固定特定嘅基因子集而產生嘅。[62][63] 細菌同古菌嘅最後共同祖先有可能係嗜熱菌,呢個提高咗一個可能性,就係較低嘅溫度對於古菌嚟講係「極端環境」,而生活喺較冷環境入面嘅生物,只係喺之後先至出現。[64] 由於古菌同細菌之間嘅關係,唔會比佢哋同真核生物之間嘅關係更加密切,所以「原核生物」呢個詞語可能會暗示佢哋之間有虛假嘅相似之處。[65] 不過,譜系之間嘅結構同功能相似性,通常係因為共同嘅祖先特徵或者演化趨同而產生嘅。呢啲相似性叫做「等級」,而原核生物最好被認為係生命嘅一個等級,佢嘅特徵係缺乏膜結合細胞器。
同其他域嘅比較
編輯下表比較咗三個域嘅一啲主要特徵,嚟說明佢哋嘅相似之處同埋唔同之處。[66]
屬性 | 古菌 | 細菌 | 真核生物 |
---|---|---|---|
細胞膜 | 醚鍵 脂 | 酯鍵 脂 | 酯鍵 脂 |
細胞壁 | 醣蛋白,或者 S層;好少情況下係 擬肽聚糖 | 肽聚糖、S 層,或者冇細胞壁 | 各種結構 |
基因 結構 | 環狀染色體,同真核生物相似嘅 轉譯 同 轉錄 | 環狀染色體,獨特嘅轉譯同轉錄 | 多個、線性染色體,但係轉譯同轉錄同古菌相似 |
內部 細胞 結構 | 冇膜結合細胞器(?[67])或者細胞核 | 冇膜結合細胞器或者細胞核 | 膜結合細胞器同細胞核 |
代謝[68] | 多種多樣,包括固氮作用,其中甲烷生成作用係古菌獨有嘅 | 多種多樣,包括光合作用、有氧同厭氧呼吸、發酵作用、固氮作用,同埋自營生物 | 光合作用、細胞呼吸作用,同發酵作用;冇固氮作用 |
繁殖 | 無性繁殖、水平基因轉移 | 無性繁殖、水平基因轉移 | 有性同無性繁殖 |
蛋白質合成起始 | 甲硫氨酸 | 甲酰甲硫氨酸 | 甲硫氨酸 |
RNA聚合酶 | 一種 | 一種 | 好多種 |
EF-2/EF-G | 對 白喉毒素 敏感 | 對白喉毒素有抗性 | 對白喉毒素敏感 |
古菌之所以分拆出嚟做第三個域,係因為佢哋嘅核糖體 RNA 結構有巨大差異。特定嘅分子 16S rRNA 係所有生物入面蛋白質生產嘅關鍵。由於呢個功能對於生命嚟講好重要,所以 16S rRNA 入面有突變嘅生物好難生存,導致呢種多核苷酸嘅結構喺幾代入面都好穩定(但唔係絕對)。16S rRNA 夠大,可以顯示生物特定嘅變異,但係又夠細,可以快速比較。喺 1977 年,研究生物基因序列嘅微生物學家 卡爾·沃斯,開發咗一種新嘅比較方法,方法係將 RNA 分裂成碎片,呢啲碎片可以排序,並且同嚟自其他生物嘅其他碎片進行比較。[9] 物種之間嘅模式越相似,佢哋嘅關係就越密切。[69]
沃斯用佢新嘅 rRNA 比較方法嚟分類同對比唔同嘅生物。佢比較咗各種物種,並且偶然發現咗一組產甲烷菌,佢哋嘅 rRNA 同任何已知嘅原核生物或者真核生物都好唔同。[9] 呢啲產甲烷菌彼此之間嘅相似程度,遠高過同其他生物嘅相似程度,令到沃斯提出咗新嘅古菌域。[9] 佢嘅實驗表明,古菌喺基因上同真核生物嘅相似程度,高過同原核生物嘅相似程度,即使佢哋喺結構上同原核生物更加相似。[70] 呢個結論引申出,古菌同真核生物共享一個比真核生物同細菌更近期嘅共同祖先。[70] 細胞核嘅發展發生喺細菌同呢個共同祖先分裂之後。[70][10]
古菌獨有嘅一個特性係,喺佢哋嘅細胞膜入面大量使用醚鍵脂。醚鍵比細菌同真核生物入面揾到嘅酯鍵喺化學上更加穩定,呢個可能係好多古菌能夠喺極端環境入面生存嘅一個促成因素,呢啲極端環境對細胞膜施加咗巨大壓力,例如極高溫同鹽度。對古菌基因組嘅比較分析亦都識別咗幾個分子保守特徵插入缺失同特徵蛋白質,佢哋獨特噉存在於所有古菌或者古菌入面唔同嘅主要群體。[71][72][73] 古菌嘅另一個獨特特徵,喺其他生物入面揾唔到嘅,係甲烷生成作用(代謝產生甲烷)。產甲烷古菌喺生態系統入面扮演關鍵角色,喺呢啲生態系統入面,生物從甲烷氧化作用入面獲取能量,其中好多都係細菌,因為佢哋通常係呢啲環境入面甲烷嘅主要來源,而且可以扮演初級生產者嘅角色。產甲烷菌喺碳循環入面都扮演住關鍵角色,將有機碳分解成甲烷,甲烷亦都係一種主要嘅溫室氣體。[74]
研究人員透過演化過程,解釋咗細菌同古菌喺生物化學結構方面嘅差異。Template:Vague 有理論認為,域都起源於深海鹼性熱泉噴口。微生物至少進化咗兩次脂質生物合成同埋細胞壁生物化學。有人提出 最後共同祖先 係一種唔自由生活嘅生物。[75] 佢可能有一層可滲透嘅膜,由細菌嘅簡單鏈兩親分子(脂肪酸)組成,包括古菌嘅簡單鏈兩親分子(異戊二烯類)。呢啲物質可以穩定海水入面嘅脂肪酸膜;呢個特性可能推動咗細菌膜同古菌膜嘅分歧,「隨後磷脂嘅生物合成產生咗古菌同細菌獨有嘅 G1P 同 G3P 頭基。如果係噉,膜異戊二烯類賦予嘅特性,就將脂質劃分放喺同生命起源一樣早期嘅位置。」[76]
同細菌嘅關係
編輯Template:PhylomapA 三個域之間嘅關係對於理解生命嘅起源至關重要。大多數代謝途徑(生物大部分基因嘅目標)喺古菌同細菌之間係通用嘅,而大多數參與基因表達嘅基因喺古菌同真核生物之間係通用嘅。[77] 喺原核生物入面,古菌嘅細胞結構同 革蘭氏陽性菌 最相似,主要係因為兩者都得一層脂雙層膜[78],而且通常都包含成分唔同嘅厚囊狀結構(外骨骼)。[79] 喺一啲基於原核生物同源物嘅唔同基因/蛋白質序列嘅系統發生樹入面,古菌同源物同革蘭氏陽性菌嘅同源物嘅關係更加密切。[78] 古菌同革蘭氏陽性菌喺好多重要蛋白質(例如 Hsp70 同埋 谷氨酰胺合成酶 I)入面,都共享保守嘅 插入缺失;[78][80] 但係呢啲基因嘅系統發生樹俾人解釋為揭示咗域間基因轉移,[81][82] 而且可能唔反映生物體嘅關係。
有人提出,古菌係由革蘭氏陽性菌演化出嚟嘅,為咗回應抗生素嘅選擇壓力。[78][80][83] 呢個觀點嘅提出,係因為觀察到古菌對好多種抗生素都有抗性,呢啲抗生素主要係由革蘭氏陽性菌產生嘅,[78][80] 而且呢啲抗生素主要作用喺啲基因上面,而呢啲基因正正係區分古菌同細菌嘅地方。有人認為,革蘭氏陽性抗生素產生嘅抗性選擇壓力,最終足以引起好多抗生素目標基因嘅廣泛變化,而呢啲菌株就代表咗而家古菌嘅共同祖先。[83] 古菌為咗回應抗生素選擇而演化,或者任何其他競爭性選擇壓力,亦都可以解釋到佢哋點解適應咗極端環境(例如高溫或者酸性),因為佢哋係為咗揾啲冇人佔據嘅生態位,嚟逃避產生抗生素嘅生物;[83][84] 卡弗利耶-史密斯 都提出咗類似嘅建議,就係 新胞學說。[85] 呢個提議亦都得到咗其他研究嘅支持,呢啲研究調查咗蛋白質結構關係[86],同埋一啲研究表明,革蘭氏陽性菌可能構成咗原核生物入面最早分支嘅譜系。[87]
同真核生物嘅關係
編輯古菌同真核生物之間嘅演化關係仍然唔清楚。除咗下面討論嘅細胞結構同功能嘅相似性之外,好多基因樹都將佢哋分埋一齊。[89]
複雜嘅因素包括,有啲聲稱話真核生物同古菌門 泉古菌門 之間嘅關係,比 廣古菌門 同 泉古菌門 之間嘅關係更密切[90],以及喺某啲細菌(例如 Thermotoga maritima)入面存在類似古菌嘅基因,呢啲基因嚟自水平基因轉移。[91] 標準嘅假說指出,真核生物嘅祖先好早就從古菌入面分化出嚟[92][93],而真核生物係通過內共生產生嘅,即係一個古菌同一個真細菌嘅融合,形成咗線粒體;呢個假說解釋咗群體之間嘅基因相似性。[88] 真核生物起源於古菌學說 反而認為,真核域 係相對較遲先至從古菌入面出現。[94]
喺 2015 年發現嘅一個古菌譜系,Lokiarchaeum(屬於提議嘅新門 洛基古菌門),以北冰洋入面一個叫做 洛基城堡 嘅熱泉噴口命名,俾人發現係嗰陣時已知同真核生物關係最密切嘅。佢俾人叫做係原核生物同真核生物之間嘅過渡生物。[95][96]
自此之後,已經揾到 "Lokiarchaeota" 嘅幾個姊妹門 ("Thorarchaeota"、"Odinarchaeota"、"Heimdallarchaeota"),全部加埋組成咗一個新提議嘅超群 "阿斯嘉德"。[26][97][98]
普羅米修斯古菌門/"阿斯嘉德"成員同真核生物之間嘅關係細節,重喺考慮之中,[99] 雖然喺 2020 年 1 月,科學家報告話 Candidatus Prometheoarchaeum syntrophicum,一種普羅米修斯古菌門/"阿斯嘉德"古菌,可能係大約二十億年前,簡單嘅原核生物同複雜嘅真核微生物之間嘅可能聯繫。[100][101][102]
形態
編輯單個古菌嘅大細範圍由 0.1 微米 (μm) 到超過 15 μm 直徑,而且有各種形狀,常見嘅係球形、桿狀、螺旋形或者板狀。[103] 泉古菌門 入面嘅其他形態包括:Sulfolobus 入面唔規則形狀嘅分葉細胞、Thermofilum 入面直徑細過半微米嘅針狀絲狀體,以及 Thermoproteus 同 Pyrobaculum 入面幾乎完美嘅長方形桿狀體。[104] Haloquadratum屬 入面嘅古菌,例如 Haloquadratum walsbyi,係扁平嘅正方形樣本,生活喺高鹽度嘅水池入面。[105] 呢啲唔尋常嘅形狀可能係由佢哋嘅細胞壁同埋原核細胞骨架共同維持嘅。喺古菌入面,存在住同其他生物細胞骨架組件相關嘅蛋白質,[106] 而且喺佢哋嘅細胞入面形成絲狀體,[107] 但係同其他生物唔同,呢啲細胞結構重未俾人好好理解。[108] 喺 Thermoplasma 同 Ferroplasma 入面,由於缺乏細胞壁,細胞嘅形狀唔規則,而且可能似變形蟲噉。[109]
一啲物種形成細胞聚集體或者絲狀體,長度達到 200 μm。[103] 呢啲生物喺生物膜入面可能好突出。[110] 值得注意嘅係,Thermococcus coalescens 細胞嘅聚集體喺培養入面會融合埋一齊,形成單個巨大嘅細胞。[111] 網火菌屬 入面嘅古菌產生複雜嘅多細胞菌落,涉及長而薄嘅空心管狀結構陣列,叫做 cannulae,佢哋從細胞表面伸出嚟,並且將細胞連接成緻密嘅灌木狀聚集體。[112] 呢啲 cannulae 嘅功能重未確定,但係佢哋可能容許同鄰居進行通訊或者養分交換。[113] 存在多物種菌落,例如喺 2001 年喺德國沼澤入面發現嘅「珍珠串」群落。新型廣古菌門物種嘅圓形白色菌落,沿着可以長達 15厘米(5.9英寸) 嘅幼細絲狀體分佈;呢啲絲狀體係由一種特定嘅細菌物種組成嘅。[114]
結構、組成開發同運作
編輯古菌同細菌嘅細胞結構大致相似,但係細胞組成同埋組織令到古菌與眾不同。同細菌一樣,古菌都缺乏內部膜同埋細胞器。[65] 同細菌一樣,古菌嘅細胞膜通常都由細胞壁包圍,而且佢哋用一條或者多條鞭毛嚟游水。[115] 喺結構上,古菌同革蘭氏陽性菌最相似。大多數都得一層等離子膜同細胞壁,而且缺乏周質空間;呢個普遍規律嘅例外係 Ignicoccus,佢哋擁有一個特別大嘅周質,入面包含膜結合囊泡,並且由外膜包圍。[116]
細胞壁同古菌鞭毛
編輯大多數古菌(但唔包括 Thermoplasma 同 Ferroplasma)都擁有細胞壁。[109] 喺大多數古菌入面,細胞壁係由表面層蛋白質組裝而成,佢哋形成一個 S層。[117] S 層係蛋白質分子嘅剛性陣列,覆蓋住細胞嘅外表面(好似鎖子甲噉)。[118] 呢個層提供化學同物理保護,而且可以阻止高分子接觸細胞膜。[119] 同細菌唔同,古菌嘅細胞壁入面冇肽聚糖。[120] 產甲烷桿菌目 嘅細胞壁入面有擬肽聚糖,佢嘅形態、功能同物理結構都似真細菌嘅肽聚糖,但係擬肽聚糖喺化學結構上係唔同嘅;佢缺乏D-氨基酸同埋N-乙酰胞壁酸,而係用N-乙酰塔洛斯氨基尿酸嚟取代後者。[119]
古菌嘅鞭毛叫做archaella,佢哋嘅運作方式似細菌嘅鞭毛 —— 佢哋嘅長柄由底部嘅旋轉摩打驅動。呢啲摩打由跨膜嘅電化學梯度提供動力,但係古菌鞭毛喺組成同埋發育方面明顯唔同。[115] 兩種鞭毛都係由唔同嘅祖先演化出嚟嘅。細菌鞭毛同III型分泌系統共享一個共同祖先,[121][122],而古菌鞭毛就好似係由細菌嘅 IV型菌毛 演化出嚟嘅。[123] 同細菌鞭毛唔同,細菌鞭毛係空心嘅,而且通過亞基向上移動中央孔洞到達鞭毛嘅尖端嚟組裝,古菌鞭毛就係喺底部添加亞基嚟合成嘅。[124]
膜
編輯古菌膜由分子組成,呢啲分子同所有其他生命形式入面嘅分子明顯唔同,表明古菌同細菌同真核生物嘅關係都好疏遠。[125] 喺所有生物入面,細胞膜都係由叫做磷脂嘅分子組成嘅。呢啲分子同時具有溶喺水入面嘅極性部分(磷酸鹽「頭部」),同埋唔溶嘅「油膩」非極性部分(脂質尾部)。呢啲唔同嘅部分通過甘油部分連接埋一齊。喺水入面,磷脂會聚集,頭部面向水,尾部背離水。細胞膜嘅主要結構係呢啲磷脂嘅雙層,叫做 脂雙層膜。[126]
古菌嘅磷脂喺四個方面唔尋常:
佢哋嘅膜由甘油-醚脂組成,而細菌同真核生物嘅膜主要由甘油-酯 脂組成。[127] 唔同之處在於將脂質連接到甘油部分嘅鍵類型;右邊圖入面嘅黃色部分顯示咗呢兩種類型。喺酯脂入面,呢個係酯鍵,而在醚脂入面,呢個係醚鍵。[128]
古菌甘油部分嘅立體化學,係其他生物入面揾到嘅鏡像。甘油部分可以以兩種互為鏡像嘅形式存在,叫做「對映異構物」。就好似右手唔容易戴入左手手套噉,一種類型嘅對映異構物通常唔可以俾適應咗另一種類型嘅酶使用或者製造。古菌磷脂係喺 sn-甘油-1-磷酸嘅骨架上面構建嘅,佢係 sn-甘油-3-磷酸嘅對映異構物,後者係細菌同真核生物入面揾到嘅磷脂骨架。呢個表明,同細菌同真核生物相比,古菌用咗完全唔同嘅酶嚟合成磷脂。呢啲酶喺生命歷史嘅早期就已經發展出嚟,表明佢哋好早就同其他兩個域分開咗。[125]
古菌脂質尾部同其他生物嘅唔同之處在於,佢哋係基於長異戊二烯鏈,具有多個側鏈,有時帶有環丙烷或者環己烷環。[129] 相反,其他生物膜入面嘅脂肪酸都係冇側鏈或者環嘅直鏈。雖然異戊二烯類喺好多生物嘅生物化學入面都扮演住重要嘅角色,但係只有古菌用佢哋嚟製造磷脂。呢啲支鏈可能幫助防止古菌膜喺高溫下洩漏。[130]
喺一啲古菌入面,脂雙層膜俾單層膜取代。實際上,古菌將兩個磷脂分子嘅尾部融合到一個具有兩個極性頭部嘅單個分子入面(雙極性脂);呢種融合可能令佢哋嘅膜更加堅硬,而且更能抵抗惡劣環境。[131] 例如,Ferroplasma 入面嘅脂質就係屬於呢種類型,呢個俾人認為有助於呢種生物喺佢嘅高酸性棲息地入面生存。[132]
代謝作用
編輯古菌喺佢哋嘅代謝入面表現出各種化學反應,並且使用多種能量來源。呢啲反應根據能量同碳來源,分類做營養類型。一啲古菌從無機化合物(例如硫或者氨)入面獲取能量(佢哋係化能生物)。呢啲包括 硝化菌、產甲烷菌 同埋 厭氧 甲烷 氧化劑。[133] 喺呢啲反應入面,一種化合物將電子傳遞到另一種化合物(喺氧化還原反應入面),釋放能量嚟推動細胞嘅活動。一種化合物充當電子供體,一種充當電子受體。釋放嘅能量用於通過化學滲透產生 三磷酸腺苷 (ATP),呢個係喺真核細胞嘅線粒體入面發生嘅相同基本過程。[134]
其他組別嘅古菌用陽光做能量來源(佢哋係光合生物),但係產生氧氣嘅光合作用唔會喺任何呢啲生物入面發生。[134] 許多基本嘅代謝途徑喺所有生命形式入面都係共享嘅;例如,古菌使用糖酵解嘅改良形式(Entner-Doudoroff 途徑)同埋完整或者部分嘅檸檬酸循環。[135] 呢啲同其他生物嘅相似之處,可能反映咗生命歷史早期嘅起源同埋佢哋嘅高效率。[136]
營養類型 | 能量來源 | 碳來源 | 例子 |
---|---|---|---|
光合生物 | 陽光 | 有機化合物 | 鹽桿菌 |
化能無機營養生物 | 無機化合物 | 有機化合物或者碳固定 | Ferroglobus、產甲烷桿菌 或者 Pyrolobus |
化能有機營養生物 | 有機化合物 | 有機化合物或者碳固定 | Pyrococcus、Sulfolobus 或者 甲烷八疊球菌目 |
一啲廣古菌門係產甲烷菌(由於代謝作用而產生甲烷嘅古菌),佢哋生活喺厭氧環境入面,例如沼澤。呢種代謝形式好早就演化出嚟,甚至有可能第一個自由生活嘅生物係產甲烷菌。[137] 一個常見嘅反應涉及使用二氧化碳做電子受體嚟氧化氫。甲烷生成作用涉及一系列古菌獨有嘅輔酶,例如 輔酶M 同埋 甲烷呋喃。[138] 其他有機化合物,例如 醇、醋酸 或者 蟻酸,俾產甲烷菌用做替代嘅電子受體。呢啲反應喺腸道棲息古菌入面好常見。醋酸亦都俾產醋酸古菌直接分解成甲烷同二氧化碳。呢啲產醋酸菌係屬於甲烷八疊球菌目嘅古菌,而且係微生物群落嘅主要組成部分,呢啲群落產生生物氣體。[139]
其他古菌用大氣入面嘅 CO2 做碳來源,喺一個叫做碳固定嘅過程入面(佢哋係自營生物)。呢個過程涉及卡爾文循環嘅高度修改形式[141] 或者另一條叫做 3-羥基丙酸/ 4-羥基丁酸循環嘅代謝途徑。[142] 泉古菌門都使用逆向克雷伯氏循環,而廣古菌門都使用還原性乙酰輔酶A途徑。[143] 碳固定係由無機能量來源提供動力。冇已知嘅古菌進行光合作用。[144] 古菌嘅能量來源極其多樣化,範圍由 亞硝化叢毛菌屬 氧化氨[145][146] 到 Sulfolobus 物種氧化硫化氫或者元素硫,使用氧氣或者金屬離子做電子受體。[134]
光合營養古菌用光嚟產生化學能,形式係 ATP。喺鹽細菌入面,光激活離子泵,好似 細菌視紫紅質 同埋 鹽視紫紅質,通過將離子泵出同泵入細胞,跨越質膜產生離子梯度。儲存喺呢啲電化學梯度入面嘅能量,然後通過ATP合成酶轉化成 ATP。[103] 呢個過程係光磷酸化嘅一種形式。呢啲光驅動泵將離子跨膜移動嘅能力,取決於埋藏喺蛋白質中心嘅 視黃醛 輔因子 嘅光驅動結構變化。[147]
遺傳學
編輯古菌通常都得一條環狀染色體,[148] 但係好多廣古菌門已經俾人證明,帶有多個呢條染色體嘅副本。[149] 截至 2002 年,已知最大嘅古菌基因組係 Methanosarcina acetivorans 嘅 5,751,492 鹼基對。[150] 細小嘅 Nanoarchaeum equitans 嘅 490,885 鹼基對基因組,係呢個大細嘅十分之一,而且係已知最小嘅古菌基因組;佢估計只包含 537 個蛋白質編碼基因。[151] 喺古菌入面都揾到更細嘅獨立 DNA 片段,叫做 質粒。質粒可以通過物理接觸喺細胞之間轉移,呢個過程可能類似於細菌接合。[152][153]
古菌喺遺傳學上同細菌同真核生物唔同,任何一個古菌基因組編碼嘅蛋白質,都有高達 15% 係呢個域獨有嘅,雖然呢啲獨特基因嘅大多數都冇已知嘅功能。[155] 喺剩低嘅已知功能嘅獨特蛋白質入面,大多數都屬於廣古菌門,而且參與甲烷生成作用。古菌、細菌同真核生物共享嘅蛋白質,形成細胞功能嘅共同核心,主要同轉錄、轉譯,同核苷酸代謝有關。[156] 古菌嘅其他特徵係:相關功能嘅基因組織方式——例如催化同一條代謝途徑入面步驟嘅酶,進入新嘅操縱子,以及 tRNA 基因同佢哋嘅 氨酰tRNA合成酶 嘅巨大差異。[156]
古菌入面嘅轉錄,同真核生物嘅轉錄更加相似,古菌嘅RNA聚合酶同佢喺真核生物入面嘅對應物非常接近,[148],而古菌嘅轉譯就顯示出細菌同真核生物對應物嘅跡象。[157] 雖然古菌只有一種 RNA 聚合酶,但佢嘅結構同埋喺轉錄入面嘅功能,似乎同真核生物嘅 RNA聚合酶II 接近,相似嘅蛋白質組裝(通用轉錄因子)指導 RNA 聚合酶同基因啟動子嘅結合,[158],但係其他古菌嘅 轉錄因子 就同喺細菌入面揾到嘅更加接近。[159] 轉錄後修飾 比真核生物入面嘅簡單,因為大多數古菌基因都冇內含子,雖然佢哋嘅 轉移RNA 同 核糖體RNA 基因入面有好多內含子,[160],而且內含子可能喺少數蛋白質編碼基因入面出現。[161][162]
基因轉移同埋遺傳交換
編輯火山鹽鹼嗜鹽菌,一種極端嗜鹽古菌,喺細胞之間形成細胞質橋,呢啲橋似乎用於喺兩個方向度,將 DNA 從一個細胞轉移到另一個細胞。[163]
當泉硫化葉菌[164] 同埋 嗜酸熱硫化葉菌[165] 呢啲超嗜熱古菌,暴露喺破壞 DNA 嘅紫外線輻射或者藥劑博來黴素或者絲裂黴素C嘅時候,會誘導物種特異性嘅細胞聚集。 S. solfataricus 入面嘅聚集,唔可以俾其他物理壓力源誘導,例如 pH 值或者溫度變化,[164] 表明聚集係專門由DNA損傷誘導嘅。 Ajon et al.[165] 表明,紫外線誘導嘅細胞聚集,喺 S. acidocaldarius 入面,以高頻率介導染色體標記交換。重組率超過未誘導培養物嘅重組率,高達三個數量級。 Frols et al.[164][166] 同埋 Ajon et al.[165] 假設細胞聚集增強咗 Sulfolobus 細胞之間嘅物種特異性 DNA 轉移,以便透過同源重組,提供更多受損 DNA 嘅修復。呢個反應可能係一種原始嘅性互動形式,類似於研究得更深入嘅細菌轉化系統,呢啲系統都同物種特異性 DNA 轉移有關,導致 DNA 損傷嘅同源重組修復。[167]
古菌病毒
編輯古菌係好多種病毒嘅目標,佢哋嘅病毒界多種多樣,同細菌同真核生物病毒唔同。到而家為止,佢哋已經組織成 15-18 個基於 DNA 嘅科,但係好多物種仍然未分離出嚟,等待分類。[168][169][170] 呢啲科可以非正式噉分為兩組:古菌特異性同埋世界性。古菌特異性病毒只係針對古菌物種,而目前包括 12 個科。喺呢個群體入面,已經觀察到好多獨特、以前未識別嘅病毒結構,包括:瓶狀病毒、紡錘狀病毒、線圈狀病毒同埋液滴狀病毒。[169] 雖然古菌特異性物種嘅繁殖週期同基因組機制,可能同其他病毒相似,但係佢哋具有獨特嘅特徵,呢啲特徵係由於佢哋感染嘅宿主細胞嘅形態而專門開發出嚟嘅。[168] 佢哋嘅病毒釋放機制同其他噬菌體唔同。噬菌體 通常會經歷 裂解途徑、溶原性途徑,或者(好少情況下)兩者嘅混合。[171] 大多數古菌特異性病毒株同佢哋嘅宿主維持穩定、有啲溶原性嘅關係——表現為慢性感染。呢個涉及病毒粒子嘅逐漸、持續嘅產生同釋放,而唔會殺死宿主細胞。[172] Prangishyili (2013) 指出,有人假設有尾古菌噬菌體起源於能夠感染鹽古菌物種嘅噬菌體。如果呢個假設係正確嘅,就可以得出結論,構成古菌特異性群體其餘部分嘅其他 雙鏈DNA病毒,係佢哋自己喺全球病毒群體入面嘅獨特群體。 Krupovic et al. (2018) 表示,水平基因轉移嘅高水平、病毒基因組入面嘅快速突變率,同埋缺乏通用基因序列,令到研究人員認為古菌病毒嘅演化途徑係一個網絡。呢個網絡同全球病毒界入面 系統發育標記 嘅缺乏相似性,以及同非病毒元素嘅外部聯繫,可能暗示一啲古菌特異性病毒物種,係從非病毒可移動遺傳因子 (MGE) 演化出嚟嘅。[169]
呢啲病毒喺嗜熱菌(尤其係 Sulfolobales 同 Thermoproteales 目)入面研究得最詳細。[173] 最近已經分離出兩組感染古菌嘅 單鏈DNA病毒。一組嘅例子係感染嗜鹽古菌嘅 Halorubrum pleomorphic virus 1 (Pleolipoviridae),[174],另一組嘅例子係感染超嗜熱(最佳生長溫度喺 90–95 °C)宿主嘅 Aeropyrum coil-shaped virus (Spiraviridae)。[175] 值得注意嘅係,後者嘅病毒具有目前報告最大嘅 ssDNA 基因組。對抗呢啲病毒嘅防禦機制可能涉及嚟自重複DNA序列嘅RNA干擾,呢啲序列同病毒嘅基因有關。[176][177]
繁殖
編輯古菌透過二分裂或者多重分裂、斷裂或者出芽嚟無性繁殖;有絲分裂同減數分裂唔會發生,所以如果一個古菌物種以多過一種形式存在,佢哋全部都具有相同嘅遺傳物質。[103] 細胞分裂 喺細胞週期入面受到控制;喺細胞嘅染色體複製咗,而且兩個子染色體分離之後,細胞就會分裂。[178] 喺 硫化葉菌屬 入面,呢個週期具有同細菌同真核生物系統相似嘅特徵。染色體從多個起點(複製起點)複製,使用嘅 DNA聚合酶 類似於真核生物嘅等效酶。[179]
喺廣古菌門入面,細胞分裂蛋白質 FtsZ,佢哋形成一個圍繞住細胞嘅收縮環,同埋喺細胞中心構建嘅 隔膜 組件,都同佢哋嘅細菌等效物相似。[178] 喺泉古菌門[180][181] 同埋奇古菌門[182],細胞分裂機制 Cdv 扮演住類似嘅角色。呢個機制同真核生物嘅 ESCRT-III 機制有關,後者雖然最出名嘅係佢喺細胞分類入面嘅作用,但係亦都已經俾人睇到佢喺分隔已分裂細胞之間扮演住一個角色,暗示咗佢喺細胞分裂入面嘅祖先角色。[183]
細菌同真核生物,但唔包括古菌,會產生孢子。[184] 鹽桿菌綱 嘅一啲物種會進行表型轉換,並且以幾種唔同嘅細胞類型生長,包括厚壁結構,佢哋可以抵抗滲透衝擊,並且令古菌能夠喺低鹽濃度嘅水入面生存,但係呢啲唔係繁殖結構,而可能係幫助佢哋到達新嘅棲息地。[185]
行為
編輯通訊
編輯群體感應 最初俾人認為唔存在喺古菌入面,但係最近嘅研究已經顯示,一啲物種能夠通過群體感應進行串擾嘅證據。其他研究表明,古菌同細菌喺生物膜生長期間,存在互營互動。雖然喺古菌群體感應方面嘅研究有限,但係一啲研究已經發現咗古菌物種入面嘅 LuxR 蛋白質,佢哋顯示出同細菌 LuxR 嘅相似之處,並且最終容許檢測喺高密度通訊入面使用嘅小分子。同細菌類似,古菌 LuxR solos 已經顯示出可以結合 AHLs(內酯)同埋非 AHLs 配體,呢個係通過群體感應,執行物種內、物種間同埋界間通訊嘅重要部分。[186]
生態學
編輯棲息地
編輯古菌存在喺廣泛嘅棲息地入面,而且而家俾人認為係全球生態系統嘅主要組成部分,[15],並且可能佔海洋入面微生物細胞嘅大約 20%。[187] 不過,最早發現嘅古菌係極端微生物。[133] 事實上,一啲古菌喺高溫下生存,通常超過 100 °C(212 °F),喺間歇泉、黑煙囪同油井入面都揾到。其他常見嘅棲息地包括非常寒冷嘅棲息地,同埋高鹽度、酸性或者鹼性嘅水,但係古菌包括嗜溫菌,佢哋喺溫和嘅條件下生長,喺沼澤同埋沼澤地、污水、海洋、動物嘅腸道同埋泥土入面。[3][15] 同PGPR類似,古菌而家都俾人認為係促進植物生長嘅來源。[3]
極端微生物古菌係四個主要生理群體嘅成員。佢哋係 嗜鹽菌、嗜熱菌、嗜鹼菌 同埋 嗜酸菌。[188] 呢啲群體唔全面或者唔係門特異性嘅,亦都唔係互相排斥嘅,因為一啲古菌屬於多個群體。儘管如此,佢哋都係分類嘅有用起點。[189]
嗜鹽菌,包括 鹽桿菌屬,生活喺極度鹽度嘅環境入面,例如鹽湖,而且喺鹽度大過 20-25% 嘅地方,佢哋嘅數量超過細菌對應物。[133] 嗜熱菌喺高過 45 °C(113 °F) 嘅溫度下生長得最好,喺溫泉等地點;超嗜熱菌 古菌喺高過 80 °C(176 °F) 嘅最佳溫度下生長。[190] 古菌 Methanopyrus kandleri 菌株 116 甚至可以喺 122 °C(252 °F) 嘅溫度下繁殖,呢個係任何生物記錄到嘅最高溫度。[191]
其他古菌存在喺非常酸性或者鹼性嘅條件下。[188] 例如,最極端嘅古菌嗜酸菌之一係 Picrophilus torridus,佢喺 pH 0 嘅環境下生長,相當於喺 1.2 摩爾 硫酸入面茁壯成長。[192]
呢種對極端環境嘅抵抗力,令到古菌成為推測外星生命可能特性嘅焦點。[193] 一啲極端微生物棲息地同 火星 上面嘅棲息地唔係唔似,[194],引申出一個建議,就係可行嘅微生物可以喺隕石入面,喺行星之間轉移。[195]
最近,幾項研究表明,古菌唔單止存在喺嗜溫同嗜熱環境入面,而且喺低溫下都存在,有時數量重好多。例如,古菌喺寒冷嘅海洋環境入面好常見,例如極地海洋。[196] 更重要嘅係,喺世界各地海洋嘅非極端棲息地入面,喺浮游生物群落(作為 微微型浮游生物 嘅一部分)入面,都揾到大量嘅古菌。[197] 雖然呢啲古菌可能以極高嘅數量存在(高達微生物生物量嘅 40%),但係幾乎冇任何呢啲物種俾人分離出嚟,並且喺純培養入面研究過。[198] 因此,我哋對古菌喺海洋生態學入面嘅作用嘅理解重係初步嘅,所以佢哋對全球生物地球化學循環嘅全面影響,仍然大部分都未探索。[199] 一啲海洋泉古菌門能夠進行硝化作用,暗示呢啲生物可能會影響海洋氮循環,[145],雖然呢啲海洋泉古菌門都可能使用其他能量來源。[200]
喺覆蓋住海底嘅沉積物入面,都揾到大量嘅古菌,呢啲生物佔咗海底以下超過 1 米深度處,大多數嘅活細胞。[201][202] 已經證明,喺所有海洋表面沉積物(從 1,000 到 10,000 米水深)入面,病毒感染對古菌嘅影響,比對細菌嘅影響更大,而且病毒引起嘅古菌裂解,佔咗被殺死嘅微生物生物總量嘅高達三分之一,導致全球每年釋放約 0.3 到 0.5 吉噸嘅碳。[203]
喺化學循環入面嘅作用
編輯古菌透過佢哋各種唔同嘅棲息地,嚟循環利用元素,例如碳、氮,同埋硫。[204] 古菌喺氮循環入面執行好多步驟。呢個包括從生態系統入面移除氮嘅反應(例如基於 硝酸鹽 嘅呼吸作用同反硝化作用),以及引入氮嘅過程(例如硝酸鹽同化作用同固氮作用)。[205][206]
研究人員最近發現古菌參與氨氧化反應。呢啲反應喺海洋入面特別重要。[146][207] 古菌似乎對於泥土入面嘅氨氧化作用都至關重要。佢哋產生亞硝酸鹽,然後俾其他微生物氧化成 硝酸鹽。植物同其他生物會消耗後者。[208]
喺硫循環入面,通過氧化硫化合物生長嘅古菌,從岩石入面釋放呢種元素,令到其他生物可以使用,但係做到呢樣嘢嘅古菌(例如 Sulfolobus),會產生硫酸做廢物,而呢啲生物喺廢棄礦山入面嘅生長,可能會導致酸性礦山排水同埋其他環境破壞。[209]
喺碳循環入面,產甲烷古菌會移除氫氣,並且喺厭氧生態系統(例如沉積物、沼澤同污水處理廠)入面,微生物群體(佢哋充當分解者)分解有機物嘅過程入面,扮演住重要嘅角色。[210]
同其他生物嘅互動
編輯古菌同其他生物之間嘅良好特性互動,要唔係互利,就係共棲。冇明確嘅已知古菌病原體或者寄生生物嘅例子,[211][212],但係一啲產甲烷菌物種俾人認為同牙周病(口腔感染)有關,[213][214],而且 Nanoarchaeum equitans 可能係另一種古菌嘅寄生生物,因為佢只係喺泉古菌 Ignicoccus hospitalis 嘅細胞入面先至可以生存同繁殖,[151],而且似乎冇為佢嘅宿主提供任何好處。[215]
互利共生
編輯互利共生係指唔同物種嘅個體之間嘅互動,呢啲互動會對相互作用嘅種群嘅人均繁殖同/或生存產生正面(有益)嘅影響。 互利共生 嘅一個好好理解嘅例子,係原生生物同產甲烷古菌之間嘅互動,佢哋喺消化纖維素嘅動物嘅消化道入面,例如反芻動物同白蟻。[216] 喺呢啲厭氧環境入面,原生生物分解植物纖維素嚟獲取能量。呢個過程會釋放氫氣做廢物,但係高濃度嘅氫氣會減少能量產生。當產甲烷菌將氫氣轉化為甲烷嘅時候,原生生物就會從更多嘅能量入面獲益。[217]
喺厭氧原生生物(例如 Plagiopyla frontata、Trimyema、Heterometopus 同埋 Metopus contortus)入面,古菌駐留喺原生生物內部,並且消耗喺佢哋氫化酶體入面產生嘅氫氣。[218][219][220][221][222] 古菌都同更大嘅生物結合。例如,海洋古菌 Cenarchaeum symbiosum 係 海綿 Axinella mexicana 嘅內共生菌。[223]
共棲
編輯一啲古菌係共棲生物,從一種結合入面獲益,但係唔會幫助或者傷害另一種生物。例如,產甲烷菌 Methanobrevibacter smithii 係人類菌群入面最常見嘅古菌,佔咗人類腸道入面大約十分之一嘅原核生物。[224] 喺白蟻同人類入面,呢啲產甲烷菌實際上可能係互利共生生物,同腸道入面嘅其他微生物互動,嚟幫助消化。[225] 古菌群落同好多其他生物結合,例如喺珊瑚嘅表面,[226] 同埋植物根周圍嘅泥土區域(根圈)。[227][228]
寄生
編輯雖然古菌冇做病原體嘅歷史名聲,但係古菌通常都俾人發現具有同更常見嘅病原體(例如 E. coli)相似嘅基因組,[229],顯示出同今日病原體嘅代謝聯繫同演化歷史。由於缺乏將古菌分類做更特定物種嘅方法,因此喺臨床研究入面,對古菌嘅檢測唔一致。[230]
喺科技同工業入面嘅意義
編輯極端微生物 古菌,尤其係對熱或者極端酸鹼度有抵抗力嘅古菌,係酶嘅來源,呢啲酶喺呢啲惡劣條件下都可以運作。[231][232] 呢啲酶已經揾到好多用途。例如,耐熱 DNA聚合酶,例如嚟自 Pyrococcus furiosus 嘅 Pfu DNA聚合酶,通過容許聚合酶鏈鎖反應喺研究入面使用,徹底改變咗分子生物學,成為一種簡單快速嘅 克隆 DNA 技術。喺工業入面,嚟自其他 Pyrococcus 物種嘅 澱粉酶、半乳糖苷酶 同 支鏈澱粉酶,佢哋喺超過 100 °C(212 °F) 嘅溫度下都可以運作,容許喺高溫下進行食品加工,例如生產低乳糖牛奶同乳清。[233] 嚟自呢啲嗜熱古菌嘅酶,喺有機溶劑入面都傾向於非常穩定,容許佢哋喺綠色化學入面嘅環保製程入面使用,合成有機化合物。[232] 呢種穩定性令到佢哋更容易喺結構生物學入面使用。因此,嚟自極端微生物古菌嘅細菌或者真核生物酶嘅對應物,通常喺結構研究入面使用。[234]
同古菌酶嘅廣泛應用相反,喺生物技術入面,生物本身嘅應用就冇咁發達。 產甲烷古菌 係 污水處理 嘅重要組成部分,因為佢哋係微生物群落嘅一部分,呢啲群落進行厭氧消化,並且產生生物氣體。[235] 喺礦物加工入面,嗜酸古菌顯示出從礦石入面提取金屬(包括金、鈷 同埋 銅)嘅前景。[236]
古菌擁有一種新型嘅潛在有用抗生素。一小部分呢啲古菌素已經俾人描述過,但係相信重有數百種存在,尤其係喺 鹽桿菌綱 同埋 Sulfolobus 入面。呢啲化合物嘅結構同細菌抗生素唔同,所以佢哋可能具有新穎嘅作用模式。此外,佢哋可能容許創建新嘅可選擇標記,用於古菌分子生物學。[237]
睇埋
編輯參考文獻
編輯- ↑ Stoeckenius W (October 1981). "Walsby's square bacterium: fine structure of an orthogonal procaryote". Journal of Bacteriology. 148 (1): 352–60. doi:10.1128/JB.148.1.352-360.1981. PMC 216199. PMID 7287626.
- ↑ "Archaea Basic Biology". March 2018.
- ↑ 3.0 3.1 3.2 3.3 Chow C, Padda KP, Puri A, Chanway CP (September 2022). "An Archaic Approach to a Modern Issue: Endophytic Archaea for Sustainable Agriculture". Current Microbiology. 79 (11): 322. doi:10.1007/s00284-022-03016-y. PMID 36125558. S2CID 252376815.
- ↑ Bang C, Schmitz RA (September 2015). "Archaea associated with human surfaces: not to be underestimated". FEMS Microbiology Reviews. 39 (5): 631–48. doi:10.1093/femsre/fuv010. PMID 25907112.
- ↑ Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA (January 2018). "Archaea Are Interactive Components of Complex Microbiomes". Trends in Microbiology. 26 (1): 70–85. doi:10.1016/j.tim.2017.07.004. PMID 28826642.
- ↑ Staley JT (November 2006). "The bacterial species dilemma and the genomic-phylogenetic species concept". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 361 (1475): 1899–909. doi:10.1098/rstb.2006.1914. PMC 1857736. PMID 17062409.
- ↑ Zuckerkandl E, Pauling L (March 1965). "Molecules as documents of evolutionary history". Journal of Theoretical Biology. 8 (2): 357–66. Bibcode:1965JThBi...8..357Z. doi:10.1016/0022-5193(65)90083-4. PMID 5876245.
- ↑ Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P (November 2018). "A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life". Nature Biotechnology. 36 (10): 996–1004. doi:10.1038/nbt.4229. PMID 30148503. S2CID 52093100.
- ↑ 9.0 9.1 9.2 9.3 Woese CR, Fox GE (November 1977). "Phylogenetic structure of the prokaryotic domain: the primary kingdoms". Proceedings of the National Academy of Sciences of the United States of America. 74 (11): 5088–90. Bibcode:1977PNAS...74.5088W. doi:10.1073/pnas.74.11.5088. PMC 432104. PMID 270744.
- ↑ 10.0 10.1 Woese CR, Kandler O, Wheelis ML (June 1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proceedings of the National Academy of Sciences of the United States of America. 87 (12): 4576–9. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC 54159. PMID 2112744.
- ↑ Sapp J (2009). The new foundations of evolution: on the tree of life. New York: Oxford University Press. ISBN 978-0-19-973438-2.
- ↑ "Archaea". Merriam-Webster Online Dictionary. 2008. 喺1 July 2008搵到.
- ↑ Magrum LJ, Luehrsen KR, Woese CR (May 1978). "Are extreme halophiles actually "bacteria"?". Journal of Molecular Evolution. 11 (1): 1–8. Bibcode:1978JMolE..11....1M. doi:10.1007/bf01768019. PMID 660662. S2CID 1291732.
- ↑ Stetter KO (1996). "Hyperthermophiles in the history of life". Ciba Foundation Symposium. 202: 1–10, discussion 11–8. PMID 9243007.
- ↑ 15.0 15.1 15.2 DeLong EF (December 1998). "Everything in moderation: archaea as 'non-extremophiles'". Current Opinion in Genetics & Development. 8 (6): 649–54. doi:10.1016/S0959-437X(98)80032-4. PMID 9914204.
- ↑ Theron J, Cloete TE (2000). "Molecular techniques for determining microbial diversity and community structure in natural environments". Critical Reviews in Microbiology. 26 (1): 37–57. doi:10.1080/10408410091154174. PMID 10782339. S2CID 5829573.
- ↑ Schmidt TM (September 2006). "The maturing of microbial ecology" (PDF). International Microbiology. 9 (3): 217–23. PMID 17061212. 原著 (PDF)喺11 September 2008歸檔.
- ↑ Gevers D, Dawyndt P, Vandamme P, Willems A, Vancanneyt M, Swings J, 等 (November 2006). "Stepping stones towards a new prokaryotic taxonomy". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 361 (1475): 1911–16. doi:10.1098/rstb.2006.1915. PMC 1764938. PMID 17062410.
- ↑ 19.0 19.1 Robertson CE, Harris JK, Spear JR, Pace NR (December 2005). "Phylogenetic diversity and ecology of environmental Archaea". Current Opinion in Microbiology. 8 (6): 638–642. doi:10.1016/j.mib.2005.10.003. PMID 16236543.
- ↑ Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (May 2002). "A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont". Nature. 417 (6884): 63–67. Bibcode:2002Natur.417...63H. doi:10.1038/417063a. PMID 11986665. S2CID 4395094.
- ↑ Barns SM, Delwiche CF, Palmer JD, Pace NR (August 1996). "Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences". Proceedings of the National Academy of Sciences of the United States of America. 93 (17): 9188–93. Bibcode:1996PNAS...93.9188B. doi:10.1073/pnas.93.17.9188. PMC 38617. PMID 8799176.
- ↑ Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, 等 (June 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proceedings of the National Academy of Sciences of the United States of America. 105 (23): 8102–07. Bibcode:2008PNAS..105.8102E. doi:10.1073/pnas.0801980105. PMC 2430366. PMID 18535141.
- ↑ Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P, Allen EE, Banfield JF (December 2006). "Lineages of acidophilic archaea revealed by community genomic analysis". Science. 314 (5807): 1933–35. Bibcode:2006Sci...314.1933B. doi:10.1126/science.1132690. PMID 17185602. S2CID 26033384.
- ↑ Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, 等 (May 2010). "Enigmatic, ultrasmall, uncultivated Archaea". Proceedings of the National Academy of Sciences of the United States of America. 107 (19): 8806–11. Bibcode:2010PNAS..107.8806B. doi:10.1073/pnas.0914470107. PMC 2889320. PMID 20421484.
- ↑ Guy L, Ettema TJ (December 2011). "The archaeal 'TACK' superphylum and the origin of eukaryotes". Trends in Microbiology. 19 (12): 580–87. doi:10.1016/j.tim.2011.09.002. PMID 22018741.
- ↑ 26.0 26.1 Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, 等 (January 2017). "Asgard archaea illuminate the origin of eukaryotic cellular complexity" (PDF). Nature. 541 (7637): 353–58. Bibcode:2017Natur.541..353Z. doi:10.1038/nature21031. OSTI 1580084. PMID 28077874. S2CID 4458094.
- ↑ Nina Dombrowski, Jun-Hoe Lee, Tom A Williams, Pierre Offre, Anja Spang (2019). Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. Nature.
- ↑ 引用錯誤 無效嘅
<ref>
標籤;無文字提供畀叫做Petitjean
嘅參照 - ↑ 29.0 29.1 Williams TA, Szöllősi GJ, Spang A, Foster PG, Heaps SE, Boussau B, 等 (June 2017). "Integrative modeling of gene and genome evolution roots the archaeal tree of life". Proceedings of the National Academy of Sciences of the United States of America. 114 (23): E4602–E4611. Bibcode:2017PNAS..114E4602W. doi:10.1073/pnas.1618463114. PMC 5468678. PMID 28533395.
- ↑ 30.0 30.1 Castelle CJ, Banfield JF (2018). "Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life". Cell. 172 (6): 1181–1197. doi:10.1016/j.cell.2018.02.016. PMID 29522741.
- ↑ 31.0 31.1 "GTDB release 09-RS220". Genome Taxonomy Database. 喺10 May 2024搵到.
- ↑ 32.0 32.1 "ar53_r220.sp_label". Genome Taxonomy Database. 喺10 May 2024搵到.
- ↑ 33.0 33.1 "Taxon History". Genome Taxonomy Database. 喺10 May 2024搵到.
- ↑ Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, 等 (April 2019). "Asgard archaea capable of anaerobic hydrocarbon cycling". Nature Communications. 10 (1): 1822. Bibcode:2019NatCo..10.1822S. doi:10.1038/s41467-019-09364-x. PMC 6478937. PMID 31015394.
- ↑ de Queiroz K (May 2005). "Ernst Mayr and the modern concept of species". Proceedings of the National Academy of Sciences of the United States of America. 102 (Supplement 1): 6600–6007. Bibcode:2005PNAS..102.6600D. doi:10.1073/pnas.0502030102. PMC 1131873. PMID 15851674.
- ↑ Eppley JM, Tyson GW, Getz WM, Banfield JF (September 2007). "Genetic exchange across a species boundary in the archaeal genus ferroplasma". Genetics. 177 (1): 407–16. doi:10.1534/genetics.107.072892. PMC 2013692. PMID 17603112.
- ↑ Papke RT, Zhaxybayeva O, Feil EJ, Sommerfeld K, Muise D, Doolittle WF (August 2007). "Searching for species in haloarchaea". Proceedings of the National Academy of Sciences of the United States of America. 104 (35): 14092–97. Bibcode:2007PNAS..10414092P. doi:10.1073/pnas.0706358104. PMC 1955782. PMID 17715057.
- ↑ Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (July 2005). "The net of life: reconstructing the microbial phylogenetic network". Genome Research. 15 (7): 954–59. doi:10.1101/gr.3666505. PMC 1172039. PMID 15965028.
- ↑ Hugenholtz P (2002). "Exploring prokaryotic diversity in the genomic era". Genome Biology. 3 (2): REVIEWS0003. doi:10.1186/gb-2002-3-2-reviews0003. PMC 139013. PMID 11864374.
- ↑ Rappé MS, Giovannoni SJ (2003). "The uncultured microbial majority" (PDF). Annual Review of Microbiology. 57: 369–94. doi:10.1146/annurev.micro.57.030502.090759. PMID 14527284. S2CID 10781051. 原著 (PDF)喺2019-03-02歸檔.
- ↑ Oren A, Garrity GM (2021). "Valid publication of the names of forty-two phyla of prokaryotes". Int J Syst Evol Microbiol. 71 (10): 5056. doi:10.1099/ijsem.0.005056. PMID 34694987. S2CID 239887308.
- ↑ Göker, Markus; Oren, Aharon (11 September 2023). "Valid publication of four additional phylum names". International Journal of Systematic and Evolutionary Microbiology. 73 (9). doi:10.1099/ijsem.0.006024. PMID 37695645.
{{cite journal}}
: Check|pmid=
value (help) - ↑ "Phylum Promethearchaeota". LPSN. 喺1 November 2024搵到.
- ↑ Imachi, Hiroyuki; Nobu, Masaru K.; Kato, Shingo; Takaki, Yoshihiro; Miyazaki, Masayuki; Makoto; Miyuki; Yumi; Sanae; Tahara, Yuhei O.; Takano, Yoshinori; Eiji; Katsuyuki; Toshihiro; Itoh, Takashi; Moriya; Ken (5 July 2024). "Promethearchaeum syntrophicum gen. nov., sp. nov., an anaerobic, obligately syntrophic archaeon, the first isolate of the lineage 'Asgard' archaea, and proposal of the new archaeal phylum Promethearchaeota phyl. nov. and kingdom Promethearchaeati regn. nov". International Journal of Systematic and Evolutionary Microbiology. Society for General Microbiology. 74 (7). doi:10.1099/ijsem.0.006435. ISSN 1466-5034. PMC 11316595. PMID 38967634.
{{cite journal}}
: Check|pmc=
value (help); Check|pmid=
value (help) - ↑ "Age of the Earth". U.S. Geological Survey. 1997. 原先內容歸檔喺23 December 2005. 喺2006-01-10搵到.
- ↑ Dalrymple GB (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Special Publications, Geological Society of London. 190 (1): 205–21. Bibcode:2001GSLSP.190..205D. doi:10.1144/GSL.SP.2001.190.01.14. S2CID 130092094.
- ↑ Manhesa G, Allègre CJ, Dupréa B, Hamelin B (1980). "Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics". Earth and Planetary Science Letters. 47 (3): 370–82. Bibcode:1980E&PSL..47..370M. doi:10.1016/0012-821X(80)90024-2.
- ↑ de Duve C (October 1995). "The Beginnings of Life on Earth". American Scientist. 原著喺6 June 2017歸檔. 喺15 January 2014搵到.
- ↑ Timmer J (4 September 2012). "3.5 billion year old organic deposits show signs of life". Ars Technica. 喺15 January 2014搵到.
- ↑ Ohtomo Y, Kakegawa T, Ishida A, Nagase T, Rosingm MT (8 December 2013). "Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks". Nature Geoscience. 7 (1): 25. Bibcode:2014NatGe...7...25O. doi:10.1038/ngeo2025.
- ↑ Borenstein S (13 November 2013). "Oldest fossil found: Meet your microbial mom". Associated Press. 喺15 November 2013搵到.
- ↑ Noffke N, Christian D, Wacey D, Hazen RM (December 2013). "Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia". Astrobiology. 13 (12): 1103–24. Bibcode:2013AsBio..13.1103N. doi:10.1089/ast.2013.1030. PMC 3870916. PMID 24205812.
- ↑ Borenstein S (19 October 2015). "Hints of life on what was thought to be desolate early Earth". Excite. Yonkers, NY: Mindspark Interactive Network. Associated Press. 原著喺2018-10-01歸檔. 喺2015-10-20搵到.
- ↑ Bell EA, Boehnke P, Harrison TM, Mao WL (November 2015). "Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon" (PDF). Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. 112 (47): 14518–21. Bibcode:2015PNAS..11214518B. doi:10.1073/pnas.1517557112. PMC 4664351. PMID 26483481.
- ↑ Schopf JW (June 2006). "Fossil evidence of Archaean life". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 361 (1470): 869–85. doi:10.1098/rstb.2006.1834. PMC 1578735. PMID 16754604.
- ↑ Chappe B, Albrecht P, Michaelis W (July 1982). "Polar lipids of archaebacteria in sediments and petroleums". Science. 217 (4554): 65–66. Bibcode:1982Sci...217...65C. doi:10.1126/science.217.4554.65. PMID 17739984. S2CID 42758483.
- ↑ Brocks JJ, Logan GA, Buick R, Summons RE (August 1999). "Archean molecular fossils and the early rise of eukaryotes". Science. 285 (5430): 1033–36. Bibcode:1999Sci...285.1033B. CiteSeerX 10.1.1.516.9123. doi:10.1126/science.285.5430.1033. PMID 10446042.
- ↑ Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (October 2008). "Reassessing the first appearance of eukaryotes and cyanobacteria". Nature. 455 (7216): 1101–4. Bibcode:2008Natur.455.1101R. doi:10.1038/nature07381. PMID 18948954. S2CID 4372071.
- ↑ Hahn J, Haug P (1986). "Traces of Archaebacteria in ancient sediments". System Applied Microbiology. 7 (Archaebacteria '85 Proceedings): 178–83. Bibcode:1986SyApM...7..178H. doi:10.1016/S0723-2020(86)80002-9.
- ↑ Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G (November 2007). "Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world". Genome Research. 17 (11): 1572–85. doi:10.1101/gr.6454307. PMC 2045140. PMID 17908824.
- ↑ Woese CR, Gupta R (January 1981). "Are archaebacteria merely derived 'prokaryotes'?". Nature. 289 (5793): 95–96. Bibcode:1981Natur.289...95W. doi:10.1038/289095a0. PMID 6161309. S2CID 4343245.
- ↑ 62.0 62.1 62.2 Woese C (June 1998). "The universal ancestor". Proceedings of the National Academy of Sciences of the United States of America. 95 (12): 6854–59. Bibcode:1998PNAS...95.6854W. doi:10.1073/pnas.95.12.6854. PMC 22660. PMID 9618502.
- ↑ 63.0 63.1 Kandler OT (August 1998). "The early diversification of life and the origin of the three domains: a proposal.". 出自 Wiegel J, Adams WW (編). Thermophiles: the keys to molecular evolution and the origin of life. Athens: Taylor and Francis. pp. 19–31. ISBN 978-1-4822-7304-5.
- ↑ Gribaldo S, Brochier-Armanet C (June 2006). "The origin and evolution of Archaea: a state of the art". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 361 (1470): 1007–22. doi:10.1098/rstb.2006.1841. PMC 1578729. PMID 16754611.
- ↑ 65.0 65.1 Woese CR (March 1994). "There must be a prokaryote somewhere: microbiology's search for itself". Microbiological Reviews. 58 (1): 1–9. doi:10.1128/MMBR.58.1.1-9.1994. PMC 372949. PMID 8177167.
- ↑ 資料嚟自 Willey JM, Sherwood LM, Woolverton CJ. Microbiology 7th ed. (2008), Ch. 19 pp. 474–475, 除咗特別註明嘅地方。
- ↑ Heimerl T, Flechsler J, Pickl C, Heinz V, Salecker B, Zweck J, Wanner G, Geimer S, Samson RY, Bell SD, Huber H, Wirth R, Wurch L, Podar M, Rachel R (13 June 2017). "A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans". Frontiers in Microbiology. 8: 1072. doi:10.3389/fmicb.2017.01072. PMC 5468417. PMID 28659892.
- ↑ Jurtshuk P (1996). "Bacterial Metabolism". Medical Microbiology (第4版). Galveston (TX): University of Texas Medical Branch at Galveston. ISBN 9780963117212. PMID 21413278.
- ↑ Howland JL (2000). The Surprising Archaea: Discovering Another Domain of Life. Oxford: Oxford University Press. pp. 25–30. ISBN 978-0-19-511183-5.
- ↑ 70.0 70.1 70.2 Cavicchioli R (January 2011). "Archaea—timeline of the third domain". Nature Reviews. Microbiology. 9 (1): 51–61. doi:10.1038/nrmicro2482. PMID 21132019. S2CID 21008512.
- ↑ Gupta RS, Shami A (February 2011). "Molecular signatures for the Crenarchaeota and the Thaumarchaeota". Antonie van Leeuwenhoek. 99 (2): 133–57. doi:10.1007/s10482-010-9488-3. PMID 20711675. S2CID 12874800.
- ↑ Gao B, Gupta RS (March 2007). "Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis". BMC Genomics. 8: 86. doi:10.1186/1471-2164-8-86. PMC 1852104. PMID 17394648.
- ↑ Gupta RS, Naushad S, Baker S (March 2015). "Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov". International Journal of Systematic and Evolutionary Microbiology. 65 (Pt 3): 1050–69. doi:10.1099/ijs.0.070136-0. PMID 25428416.
- ↑ Deppenmeier U (2002). The unique biochemistry of methanogenesis. Progress in Nucleic Acid Research and Molecular Biology.第71卷. pp. 223–83. doi:10.1016/s0079-6603(02)71045-3. ISBN 978-0-12-540071-8. PMID 12102556.
- ↑ Martin W, Russell MJ (January 2003). "On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 358 (1429): 59–85. doi:10.1098/rstb.2002.1183. PMC 1693102. PMID 12594918.
- ↑ Jordan SF, Nee E, Lane N (December 2019). "Isoprenoids enhance the stability of fatty acid membranes at the emergence of life potentially leading to an early lipid divide". Interface Focus. 9 (6): 20190067. doi:10.1098/rsfs.2019.0067. PMC 6802135. PMID 31641436.
- ↑ Koonin EV, Mushegian AR, Galperin MY, Walker DR (August 1997). "Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea". Molecular Microbiology. 25 (4): 619–37. doi:10.1046/j.1365-2958.1997.4821861.x. PMID 9379893. S2CID 36270763.
- ↑ 78.0 78.1 78.2 78.3 78.4 Gupta RS (December 1998). "Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes". Microbiology and Molecular Biology Reviews. 62 (4): 1435–91. doi:10.1128/MMBR.62.4.1435-1491.1998. PMC 98952. PMID 9841678.
- ↑ Koch AL (April 2003). "Were Gram-positive rods the first bacteria?". Trends in Microbiology. 11 (4): 166–70. doi:10.1016/S0966-842X(03)00063-5. PMID 12706994.
- ↑ 80.0 80.1 80.2 Gupta RS (August 1998). "What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms". Molecular Microbiology. 29 (3): 695–707. doi:10.1046/j.1365-2958.1998.00978.x. PMID 9723910. S2CID 41206658.
- ↑ Gogarten JP (November 1994). "Which is the most conserved group of proteins? Homology-orthology, paralogy, xenology, and the fusion of independent lineages". Journal of Molecular Evolution. 39 (5): 541–43. Bibcode:1994JMolE..39..541G. doi:10.1007/bf00173425. PMID 7807544. S2CID 44922755.
- ↑ Brown JR, Masuchi Y, Robb FT, Doolittle WF (June 1994). "Evolutionary relationships of bacterial and archaeal glutamine synthetase genes". Journal of Molecular Evolution. 38 (6): 566–76. Bibcode:1994JMolE..38..566B. doi:10.1007/BF00175876. PMID 7916055. S2CID 21493521.
- ↑ 83.0 83.1 83.2 Gupta RS (2000). "The natural evolutionary relationships among prokaryotes". Critical Reviews in Microbiology. 26 (2): 111–31. CiteSeerX 10.1.1.496.1356. doi:10.1080/10408410091154219. PMID 10890353. S2CID 30541897.
- ↑ Gupta RS (2005). "Molecular Sequences and the Early History of Life". 出自 Sapp J (編). Microbial Phylogeny and Evolution: Concepts and Controversies. New York: Oxford University Press. pp. 160–183.
- ↑ Cavalier-Smith T (January 2002). "The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification". International Journal of Systematic and Evolutionary Microbiology. 52 (Pt 1): 7–76. doi:10.1099/00207713-52-1-7. PMID 11837318.
- ↑ Valas RE, Bourne PE (February 2011). "The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon". Biology Direct. 6: 16. doi:10.1186/1745-6150-6-16. PMC 3056875. PMID 21356104.
- ↑ Skophammer RG, Herbold CW, Rivera MC, Servin JA, Lake JA (September 2006). "Evidence that the root of the tree of life is not within the Archaea". Molecular Biology and Evolution. 23 (9): 1648–51. doi:10.1093/molbev/msl046. PMID 16801395.
- ↑ 88.0 88.1 Latorre A, Durban A, Moya A, Pereto J (2011). "The role of symbiosis in eukaryotic evolution". 出自 Gargaud M, López-Garcìa P, Martin H (編). Origins and Evolution of Life: An astrobiological perspective. Cambridge: Cambridge University Press. pp. 326–339. ISBN 978-0-521-76131-4. 原先內容歸檔喺24 March 2019. 喺27 August 2017搵到.
- ↑ Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG (November 2017). "Archaea and the origin of eukaryotes". Nature Reviews. Microbiology. 15 (12): 711–723. doi:10.1038/nrmicro.2017.133. PMID 29123225. S2CID 8666687.
- ↑ Lake JA (January 1988). "Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences". Nature. 331 (6152): 184–86. Bibcode:1988Natur.331..184L. doi:10.1038/331184a0. PMID 3340165. S2CID 4368082.
- ↑ Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, 等 (May 1999). "Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima". Nature. 399 (6734): 323–29. Bibcode:1999Natur.399..323N. doi:10.1038/20601. PMID 10360571. S2CID 4420157.
- ↑ Gouy M, Li WH (May 1989). "Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree". Nature. 339 (6220): 145–47. Bibcode:1989Natur.339..145G. doi:10.1038/339145a0. PMID 2497353. S2CID 4315004.
- ↑ Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV (August 2008). "The deep archaeal roots of eukaryotes". Molecular Biology and Evolution. 25 (8): 1619–30. doi:10.1093/molbev/msn108. PMC 2464739. PMID 18463089.
- ↑ Williams TA, Foster PG, Cox CJ, Embley TM (December 2013). "An archaeal origin of eukaryotes supports only two primary domains of life". Nature. 504 (7479): 231–36. Bibcode:2013Natur.504..231W. doi:10.1038/nature12779. PMID 24336283. S2CID 4461775.
- ↑ Zimmer C (6 May 2015). "Under the Sea, a Missing Link in the Evolution of Complex Cells". The New York Times. 喺6 May 2015搵到.
- ↑ Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ (May 2015). "Complex archaea that bridge the gap between prokaryotes and eukaryotes". Nature. 521 (7551): 173–179. Bibcode:2015Natur.521..173S. doi:10.1038/nature14447. PMC 4444528. PMID 25945739.
- ↑ 引用錯誤 無效嘅
<ref>
標籤;無文字提供畀叫做NCBI taxonomy page on Archaea
嘅參照 - ↑ Seitz KW, Lazar CS, Hinrichs KU, Teske AP, Baker BJ (July 2016). "Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction". The ISME Journal. 10 (7): 1696–705. Bibcode:2016ISMEJ..10.1696S. doi:10.1038/ismej.2015.233. PMC 4918440. PMID 26824177.
- ↑ MacLeod F, Kindler GS, Wong HL, Chen R, Burns BP (2019). "Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes". AIMS Microbiology. 5 (1): 48–61. doi:10.3934/microbiol.2019.1.48. PMC 6646929. PMID 31384702.
- ↑ Zimmer C (15 January 2020). "This Strange Microbe May Mark One of Life's Great Leaps – A organism living in ocean muck offers clues to the origins of the complex cells of all animals and plants". The New York Times. 喺16 January 2020搵到.
- ↑ Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, 等 (January 2020). "Isolation of an archaeon at the prokaryote-eukaryote interface". Nature. 577 (7791): 519–525. Bibcode:2020Natur.577..519I. doi:10.1038/s41586-019-1916-6. PMC 7015854. PMID 31942073.
- ↑ Tirumalai MR, Sivaraman RV, Kutty LA, Song EL, Fox GE (September 2023). "Ribosomal Protein Cluster Organization in Asgard Archaea". Archaea. 2023: 1–16. Bibcode:2023Archa202312414T. doi:10.1155/2023/5512414. PMC 10833476. PMID 38314098.
{{cite journal}}
: Check|pmc=
value (help); Check|pmid=
value (help) - ↑ 103.0 103.1 103.2 103.3 Krieg N (2005). Bergey's Manual of Systematic Bacteriology. US: Springer. pp. 21–26. ISBN 978-0-387-24143-2.
- ↑ Barns S, Burggraf S (1997). "Crenarchaeota". The Tree of Life Web Project. Version 01 January 1997.
- ↑ Walsby AE (1980). "A square bacterium". Nature. 283 (5742): 69–71. Bibcode:1980Natur.283...69W. doi:10.1038/283069a0. S2CID 4341717.
- ↑ Hara F, Yamashiro K, Nemoto N, Ohta Y, Yokobori S, Yasunaga T, 等 (March 2007). "An actin homolog of the archaeon Thermoplasma acidophilum that retains the ancient characteristics of eukaryotic actin". Journal of Bacteriology. 189 (5): 2039–45. doi:10.1128/JB.01454-06. PMC 1855749. PMID 17189356.
- ↑ Trent JD, Kagawa HK, Yaoi T, Olle E, Zaluzec NJ (May 1997). "Chaperonin filaments: the archaeal cytoskeleton?". Proceedings of the National Academy of Sciences of the United States of America. 94 (10): 5383–88. Bibcode:1997PNAS...94.5383T. doi:10.1073/pnas.94.10.5383. PMC 24687. PMID 9144246.
- ↑ Hixon WG, Searcy DG (1993). "Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts". Bio Systems. 29 (2–3): 151–60. Bibcode:1993BiSys..29..151H. doi:10.1016/0303-2647(93)90091-P. PMID 8374067.
- ↑ 109.0 109.1 Golyshina OV, Pivovarova TA, Karavaiko GI, Kondratéva TF, Moore ER, Abraham WR, 等 (May 2000). "Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea". International Journal of Systematic and Evolutionary Microbiology. 50 (3): 997–1006. doi:10.1099/00207713-50-3-997. PMID 10843038.
- ↑ Hall-Stoodley L, Costerton JW, Stoodley P (February 2004). "Bacterial biofilms: from the natural environment to infectious diseases". Nature Reviews. Microbiology. 2 (2): 95–108. doi:10.1038/nrmicro821. PMID 15040259. S2CID 9107205.
- ↑ Kuwabara T, Minaba M, Iwayama Y, Inouye I, Nakashima M, Marumo K, 等 (November 2005). "Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount". International Journal of Systematic and Evolutionary Microbiology. 55 (Pt 6): 2507–14. doi:10.1099/ijs.0.63432-0. PMID 16280518.
- ↑ Nickell S, Hegerl R, Baumeister W, Rachel R (January 2003). "Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography". Journal of Structural Biology. 141 (1): 34–42. doi:10.1016/S1047-8477(02)00581-6. PMID 12576018.
- ↑ Horn C, Paulmann B, Kerlen G, Junker N, Huber H (August 1999). "In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope". Journal of Bacteriology. 181 (16): 5114–18. doi:10.1128/JB.181.16.5114-5118.1999. PMC 94007. PMID 10438790.
- ↑ Rudolph C, Wanner G, Huber R (May 2001). "Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology". Applied and Environmental Microbiology. 67 (5): 2336–44. Bibcode:2001ApEnM..67.2336R. doi:10.1128/AEM.67.5.2336-2344.2001. PMC 92875. PMID 11319120.
- ↑ 115.0 115.1 Thomas NA, Bardy SL, Jarrell KF (April 2001). "The archaeal flagellum: a different kind of prokaryotic motility structure". FEMS Microbiology Reviews. 25 (2): 147–74. doi:10.1111/j.1574-6976.2001.tb00575.x. PMID 11250034.
- ↑ Rachel R, Wyschkony I, Riehl S, Huber H (March 2002). "The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon". Archaea. 1 (1): 9–18. doi:10.1155/2002/307480. PMC 2685547. PMID 15803654.
- ↑ Sára M, Sleytr UB (February 2000). "S-Layer proteins". Journal of Bacteriology. 182 (4): 859–68. doi:10.1128/JB.182.4.859-868.2000. PMC 94357. PMID 10648507.
- ↑ Engelhardt H, Peters J (December 1998). "Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions". Journal of Structural Biology. 124 (2–3): 276–302. doi:10.1006/jsbi.1998.4070. PMID 10049812.
- ↑ 119.0 119.1 Kandler O, König H (April 1998). "Cell wall polymers in Archaea (Archaebacteria)". Cellular and Molecular Life Sciences. 54 (4): 305–08. doi:10.1007/s000180050156. PMC 11147200. PMID 9614965. S2CID 13527169.
{{cite journal}}
: Check|pmc=
value (help) - ↑ Howland JL (2000). The Surprising Archaea: Discovering Another Domain of Life. Oxford: Oxford University Press. p. 32. ISBN 978-0-19-511183-5.
- ↑ Gophna U, Ron EZ, Graur D (July 2003). "Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events". Gene. 312: 151–63. doi:10.1016/S0378-1119(03)00612-7. PMID 12909351.
- ↑ Nguyen L, Paulsen IT, Tchieu J, Hueck CJ, Saier MH (April 2000). "Phylogenetic analyses of the constituents of Type III protein secretion systems". Journal of Molecular Microbiology and Biotechnology. 2 (2): 125–44. PMID 10939240.
- ↑ Ng SY, Chaban B, Jarrell KF (2006). "Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications". Journal of Molecular Microbiology and Biotechnology. 11 (3–5): 167–91. doi:10.1159/000094053. PMID 16983194. S2CID 30386932.
- ↑ Bardy SL, Ng SY, Jarrell KF (February 2003). "Prokaryotic motility structures". Microbiology. 149 (Pt 2): 295–304. doi:10.1099/mic.0.25948-0. PMID 12624192. S2CID 20751743.
- ↑ 125.0 125.1 Koga Y, Morii H (March 2007). "Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations". Microbiology and Molecular Biology Reviews. 71 (1): 97–120. doi:10.1128/MMBR.00033-06. PMC 1847378. PMID 17347520.
- ↑ Youssefian S, Rahbar N, Van Dessel S (May 2018). "Thermal conductivity and rectification in asymmetric archaeal lipid membranes". The Journal of Chemical Physics. 148 (17): 174901. Bibcode:2018JChPh.148q4901Y. doi:10.1063/1.5018589. PMID 29739208.
- ↑ De Rosa M, Gambacorta A, Gliozzi A (March 1986). "Structure, biosynthesis, and physicochemical properties of archaebacterial lipids". Microbiological Reviews. 50 (1): 70–80. doi:10.1128/MMBR.50.1.70-80.1986. PMC 373054. PMID 3083222.
- ↑ Balleza D, Garcia-Arribas AB, Sot J, Ruiz-Mirazo K, Goñi FM (September 2014). "Ether- versus ester-linked phospholipid bilayers containing either linear or branched apolar chains". Biophysical Journal. 107 (6): 1364–74. Bibcode:2014BpJ...107.1364B. doi:10.1016/j.bpj.2014.07.036. PMC 4167531. PMID 25229144.
- ↑ Damsté JS, Schouten S, Hopmans EC, van Duin AC, Geenevasen JA (October 2002). "Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota". Journal of Lipid Research. 43 (10): 1641–51. doi:10.1194/jlr.M200148-JLR200. PMID 12364548.
- ↑ Koga Y, Morii H (November 2005). "Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects". Bioscience, Biotechnology, and Biochemistry. 69 (11): 2019–34. doi:10.1271/bbb.69.2019. PMID 16306681. S2CID 42237252.
- ↑ Hanford MJ, Peeples TL (January 2002). "Archaeal tetraether lipids: unique structures and applications". Applied Biochemistry and Biotechnology. 97 (1): 45–62. doi:10.1385/ABAB:97:1:45. PMID 11900115. S2CID 22334666.
- ↑ Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kaspar CW, Banfield JF (October 2004). "Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid". Extremophiles. 8 (5): 411–19. doi:10.1007/s00792-004-0404-5. PMID 15258835. S2CID 15702103.
- ↑ 133.0 133.1 133.2 Valentine DL (April 2007). "Adaptations to energy stress dictate the ecology and evolution of the Archaea". Nature Reviews. Microbiology. 5 (4): 316–23. doi:10.1038/nrmicro1619. PMID 17334387. S2CID 12384143.
- ↑ 134.0 134.1 134.2 Schäfer G, Engelhard M, Müller V (September 1999). "Bioenergetics of the Archaea". Microbiology and Molecular Biology Reviews. 63 (3): 570–620. doi:10.1128/MMBR.63.3.570-620.1999. PMC 103747. PMID 10477309.
- ↑ Zillig W (December 1991). "Comparative biochemistry of Archaea and Bacteria". Current Opinion in Genetics & Development. 1 (4): 544–51. doi:10.1016/S0959-437X(05)80206-0. PMID 1822288.
- ↑ Romano AH, Conway T (1996). "Evolution of carbohydrate metabolic pathways". Research in Microbiology. 147 (6–7): 448–55. doi:10.1016/0923-2508(96)83998-2. PMID 9084754.
- ↑ Koch AL (1998). How did bacteria come to be?. Advances in Microbial Physiology.第40卷. pp. 353–99. doi:10.1016/S0065-2911(08)60135-6. ISBN 978-0-12-027740-7. PMID 9889982.
- ↑ DiMarco AA, Bobik TA, Wolfe RS (1990). "Unusual coenzymes of methanogenesis". Annual Review of Biochemistry. 59: 355–94. doi:10.1146/annurev.bi.59.070190.002035. PMID 2115763.
- ↑ Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, 等 (August 2008). "Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass". Systematic and Applied Microbiology. 31 (3): 190–205. Bibcode:2008SyApM..31..190K. doi:10.1016/j.syapm.2008.02.003. PMID 18501543.
- ↑ 基於 PDB 1FBB。數據發表喺 Subramaniam S, Henderson R (August 2000). "Molecular mechanism of vectorial proton translocation by bacteriorhodopsin". Nature. 406 (6796): 653–57. Bibcode:2000Natur.406..653S. doi:10.1038/35020614. PMID 10949309. S2CID 4395278.
- ↑ Mueller-Cajar O, Badger MR (August 2007). "New roads lead to Rubisco in archaebacteria". BioEssays. 29 (8): 722–24. doi:10.1002/bies.20616. PMID 17621634.
- ↑ Berg IA, Kockelkorn D, Buckel W, Fuchs G (December 2007). "A 3-hydroxypropionate/ 4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea". Science. 318 (5857): 1782–86. Bibcode:2007Sci...318.1782B. doi:10.1126/science.1149976. PMID 18079405. S2CID 13218676.
- ↑ Thauer RK (December 2007). "Microbiology. A fifth pathway of carbon fixation". Science. 318 (5857): 1732–33. doi:10.1126/science.1152209. PMID 18079388. S2CID 83805878.
- ↑ Bryant DA, Frigaard NU (November 2006). "Prokaryotic photosynthesis and phototrophy illuminated". Trends in Microbiology. 14 (11): 488–96. doi:10.1016/j.tim.2006.09.001. PMID 16997562.
- ↑ 145.0 145.1 Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (September 2005). "Isolation of an autotrophic ammonia-oxidizing marine archaeon". Nature. 437 (7058): 543–46. Bibcode:2005Natur.437..543K. doi:10.1038/nature03911. PMID 16177789. S2CID 4340386.
- ↑ 146.0 146.1 Francis CA, Beman JM, Kuypers MM (May 2007). "New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation". The ISME Journal. 1 (1): 19–27. Bibcode:2007ISMEJ...1...19F. doi:10.1038/ismej.2007.8. PMID 18043610.
- ↑ Lanyi JK (2004). "Bacteriorhodopsin". Annual Review of Physiology. 66: 665–88. doi:10.1146/annurev.physiol.66.032102.150049. PMID 14977418.
- ↑ 148.0 148.1 Allers T, Mevarech M (January 2005). "Archaeal genetics – the third way" (PDF). Nature Reviews Genetics. 6 (1): 58–73. doi:10.1038/nrg1504. PMID 15630422. S2CID 20229552. 原著 (PDF)喺20 July 2018歸檔. 喺12 September 2019搵到.
- ↑ Hildenbrand C, Stock T, Lange C, Rother M, Soppa J (February 2011). "Genome copy numbers and gene conversion in methanogenic archaea". Journal of Bacteriology. 193 (3): 734–43. doi:10.1128/JB.01016-10. PMC 3021236. PMID 21097629.
- ↑ Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, 等 (April 2002). "The genome of M. acetivorans reveals extensive metabolic and physiological diversity". Genome Research. 12 (4): 532–42. doi:10.1101/gr.223902. PMC 187521. PMID 11932238.
- ↑ 151.0 151.1 Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, 等 (October 2003). "The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism". Proceedings of the National Academy of Sciences of the United States of America. 100 (22): 12984–88. Bibcode:2003PNAS..10012984W. doi:10.1073/pnas.1735403100. PMC 240731. PMID 14566062.
- ↑ Schleper C, Holz I, Janekovic D, Murphy J, Zillig W (August 1995). "A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating". Journal of Bacteriology. 177 (15): 4417–26. doi:10.1128/jb.177.15.4417-4426.1995. PMC 177192. PMID 7635827.
- ↑ Sota M, Top EM (2008). "Horizontal Gene Transfer Mediated by Plasmids". Plasmids: Current Research and Future Trends. Caister Academic Press. ISBN 978-1-904455-35-6.
- ↑ Xiang X, Chen L, Huang X, Luo Y, She Q, Huang L (July 2005). "Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features". Journal of Virology. 79 (14): 8677–86. doi:10.1128/JVI.79.14.8677-8686.2005. PMC 1168784. PMID 15994761.
- ↑ Graham DE, Overbeek R, Olsen GJ, Woese CR (March 2000). "An archaeal genomic signature". Proceedings of the National Academy of Sciences of the United States of America. 97 (7): 3304–08. Bibcode:2000PNAS...97.3304G. doi:10.1073/pnas.050564797. PMC 16234. PMID 10716711.
- ↑ 156.0 156.1 Gaasterland T (October 1999). "Archaeal genomics". Current Opinion in Microbiology. 2 (5): 542–47. doi:10.1016/S1369-5274(99)00014-4. PMID 10508726.
- ↑ Dennis PP (June 1997). "Ancient ciphers: translation in Archaea". Cell. 89 (7): 1007–10. doi:10.1016/S0092-8674(00)80288-3. PMID 9215623. S2CID 18862794.
- ↑ Werner F (September 2007). "Structure and function of archaeal RNA polymerases". Molecular Microbiology. 65 (6): 1395–404. doi:10.1111/j.1365-2958.2007.05876.x. PMID 17697097. S2CID 28078184.
- ↑ Aravind L, Koonin EV (December 1999). "DNA-binding proteins and evolution of transcription regulation in the archaea". Nucleic Acids Research. 27 (23): 4658–70. doi:10.1093/nar/27.23.4658. PMC 148756. PMID 10556324.
- ↑ Lykke-Andersen J, Aagaard C, Semionenkov M, Garrett RA (September 1997). "Archaeal introns: splicing, intercellular mobility and evolution". Trends in Biochemical Sciences. 22 (9): 326–31. doi:10.1016/S0968-0004(97)01113-4. PMID 9301331.
- ↑ Watanabe Y, Yokobori S, Inaba T, Yamagishi A, Oshima T, Kawarabayasi Y, 等 (January 2002). "Introns in protein-coding genes in Archaea". FEBS Letters. 510 (1–2): 27–30. Bibcode:2002FEBSL.510...27W. doi:10.1016/S0014-5793(01)03219-7. PMID 11755525. S2CID 27294545.
- ↑ Yoshinari S, Itoh T, Hallam SJ, DeLong EF, Yokobori S, Yamagishi A, 等 (August 2006). "Archaeal pre-mRNA splicing: a connection to hetero-oligomeric splicing endonuclease". Biochemical and Biophysical Research Communications. 346 (3): 1024–32. doi:10.1016/j.bbrc.2006.06.011. PMID 16781672.
- ↑ Rosenshine I, Tchelet R, Mevarech M (September 1989). "The mechanism of DNA transfer in the mating system of an archaebacterium". Science. 245 (4924): 1387–89. Bibcode:1989Sci...245.1387R. doi:10.1126/science.2818746. PMID 2818746.
- ↑ 164.0 164.1 164.2 Fröls S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M, 等 (November 2008). "UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation". Molecular Microbiology. 70 (4): 938–52. doi:10.1111/j.1365-2958.2008.06459.x. PMID 18990182. S2CID 12797510.
- ↑ 165.0 165.1 165.2 Ajon M, Fröls S, van Wolferen M, Stoecker K, Teichmann D, Driessen AJ, 等 (November 2011). "UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili" (PDF). Molecular Microbiology. 82 (4): 807–17. doi:10.1111/j.1365-2958.2011.07861.x. PMID 21999488. S2CID 42880145.
- ↑ Fröls S, White MF, Schleper C (February 2009). "Reactions to UV damage in the model archaeon Sulfolobus solfataricus". Biochemical Society Transactions. 37 (Pt 1): 36–41. doi:10.1042/BST0370036. PMID 19143598.
- ↑ Bernstein H, Bernstein C (2017). "Sexual Communication in Archaea, the Precursor to Eukaryotic Meiosis". 出自 Witzany G (編). Biocommunication of Archaea. Springer Nature. pp. 301–117. doi:10.1007/978-3-319-65536-9_7. ISBN 978-3-319-65535-2.
- ↑ 168.0 168.1 Blohs M, Moissl-Eichinger C, Mahnert A, Spang A, Dombrowski N, Krupovic M, Klingl A (January 2019). "Archaea – An Introduction". 出自 Schmidt TM (編). Encyclopedia of Microbiology (英文) (第Fourth版). Academic Press. pp. 243–252. doi:10.1016/B978-0-12-809633-8.20884-4. ISBN 978-0-12-811737-8. S2CID 164553336.
- ↑ 169.0 169.1 169.2 Krupovic M, Cvirkaite-Krupovic V, Iranzo J, Prangishvili D, Koonin EV (January 2018). "Viruses of archaea: Structural, functional, environmental and evolutionary genomics". Virus Research. 244: 181–193. doi:10.1016/j.virusres.2017.11.025. PMC 5801132. PMID 29175107.
- ↑ Pietilä MK, Demina TA, Atanasova NS, Oksanen HM, Bamford DH (June 2014). "Archaeal viruses and bacteriophages: comparisons and contrasts". Trends in Microbiology. 22 (6): 334–44. doi:10.1016/j.tim.2014.02.007. PMID 24647075.
- ↑ Principi N, Silvestri E, Esposito S (2019). "Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections". Frontiers in Pharmacology (英文). 10: 513. doi:10.3389/fphar.2019.00513. PMC 6517696. PMID 31139086.
- ↑ Prangishvili D (2013-01-01). "Viruses of the Archaea". 出自 Maloy S, Hughes K (編). Brenner's Encyclopedia of Genetics. Brenner's Encyclopedia of Genetics (Second Edition) (英文). Academic Press. pp. 295–298. doi:10.1016/B978-0-12-374984-0.01627-2. ISBN 978-0-08-096156-9. 喺2020-03-16搵到.
- ↑ Prangishvili D, Garrett RA (April 2004). "Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses" (PDF). Biochemical Society Transactions. 32 (Pt 2): 204–08. doi:10.1042/BST0320204. PMID 15046572. S2CID 20018642.
- ↑ Pietilä MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (April 2009). "An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope". Molecular Microbiology. 72 (2): 307–19. doi:10.1111/j.1365-2958.2009.06642.x. PMID 19298373. S2CID 24894269.
- ↑ Mochizuki T, Krupovic M, Pehau-Arnaudet G, Sako Y, Forterre P, Prangishvili D (August 2012). "Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome". Proceedings of the National Academy of Sciences of the United States of America. 109 (33): 13386–91. Bibcode:2012PNAS..10913386M. doi:10.1073/pnas.1203668109. PMC 3421227. PMID 22826255.
- ↑ Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E (February 2005). "Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements". Journal of Molecular Evolution. 60 (2): 174–82. Bibcode:2005JMolE..60..174M. doi:10.1007/s00239-004-0046-3. PMID 15791728. S2CID 27481111.
- ↑ Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (March 2006). "A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action". Biology Direct. 1: 7. doi:10.1186/1745-6150-1-7. PMC 1462988. PMID 16545108.
- ↑ 178.0 178.1 Bernander R (August 1998). "Archaea and the cell cycle". Molecular Microbiology. 29 (4): 955–61. doi:10.1046/j.1365-2958.1998.00956.x. PMID 9767564. S2CID 34816545.
- ↑ Kelman LM, Kelman Z (September 2004). "Multiple origins of replication in archaea". Trends in Microbiology. 12 (9): 399–401. doi:10.1016/j.tim.2004.07.001. PMID 15337158.
- ↑ Lindås AC, Karlsson EA, Lindgren MT, Ettema TJ, Bernander R (December 2008). "A unique cell division machinery in the Archaea". Proceedings of the National Academy of Sciences of the United States of America. 105 (48): 18942–46. Bibcode:2008PNAS..10518942L. doi:10.1073/pnas.0809467105. PMC 2596248. PMID 18987308.
- ↑ Samson RY, Obita T, Freund SM, Williams RL, Bell SD (December 2008). "A role for the ESCRT system in cell division in archaea". Science. 322 (5908): 1710–13. Bibcode:2008Sci...322.1710S. doi:10.1126/science.1165322. PMC 4121953. PMID 19008417.
- ↑ Pelve EA, Lindås AC, Martens-Habbena W, de la Torre JR, Stahl DA, Bernander R (November 2011). "Cdv-based cell division and cell cycle organization in the thaumarchaeon Nitrosopumilus maritimus". Molecular Microbiology. 82 (3): 555–66. doi:10.1111/j.1365-2958.2011.07834.x. PMID 21923770. S2CID 1202516.
- ↑ Caspi Y, Dekker C (2018). "Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery". Frontiers in Microbiology. 9: 174. doi:10.3389/fmicb.2018.00174. PMC 5840170. PMID 29551994.
- ↑ Onyenwoke RU, Brill JA, Farahi K, Wiegel J (October 2004). "Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch ( Firmicutes)". Archives of Microbiology. 182 (2–3): 182–92. Bibcode:2004ArMic.182..182O. doi:10.1007/s00203-004-0696-y. PMID 15340788. S2CID 34339306.
- ↑ Kostrikina NA, Zvyagintseva IS, Duda VI (1991). "Cytological peculiarities of some extremely halophilic soil archaeobacteria". Arch. Microbiol. 156 (5): 344–49. Bibcode:1991ArMic.156..344K. doi:10.1007/BF00248708. S2CID 13316631.
- ↑ Rajput A, Kumar M (2017). "Computational Exploration of Putative LuxR Solos in Archaea and Their Functional Implications in Quorum Sensing". Frontiers in Microbiology (English). 8: 798. doi:10.3389/fmicb.2017.00798. PMC 5413776. PMID 28515720.
{{cite journal}}
: CS1 maint: unrecognized language (link) - ↑ DeLong EF, Pace NR (August 2001). "Environmental diversity of bacteria and archaea". Systematic Biology. 50 (4): 470–78. CiteSeerX 10.1.1.321.8828. doi:10.1080/106351501750435040. PMID 12116647.
- ↑ 188.0 188.1 Pikuta EV, Hoover RB, Tang J (2007). "Microbial extremophiles at the limits of life". Critical Reviews in Microbiology. 33 (3): 183–209. doi:10.1080/10408410701451948. PMID 17653987. S2CID 20225471.
- ↑ Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S (November 2017). "The growing tree of Archaea: new perspectives on their diversity, evolution and ecology". The ISME Journal. 11 (11): 2407–2425. Bibcode:2017ISMEJ..11.2407A. doi:10.1038/ismej.2017.122. PMC 5649171. PMID 28777382.
- ↑ Madigan MT, Martino JM (2006). Brock Biology of Microorganisms (第11版). Pearson. p. 136. ISBN 978-0-13-196893-6.
- ↑ Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (August 2008). "Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation". Proceedings of the National Academy of Sciences of the United States of America. 105 (31): 10949–54. Bibcode:2008PNAS..10510949T. doi:10.1073/pnas.0712334105. PMC 2490668. PMID 18664583.
{{cite journal}}
: no-break space character in|title=
at position 26 (help) - ↑ Ciaramella M, Napoli A, Rossi M (February 2005). "Another extreme genome: how to live at pH 0". Trends in Microbiology. 13 (2): 49–51. doi:10.1016/j.tim.2004.12.001. PMID 15680761.
- ↑ Javaux EJ (2006). "Extreme life on Earth--past, present and possibly beyond". Research in Microbiology. 157 (1): 37–48. doi:10.1016/j.resmic.2005.07.008. PMID 16376523.
- ↑ Nealson KH (January 1999). "Post-Viking microbiology: new approaches, new data, new insights" (PDF). Origins of Life and Evolution of the Biosphere. 29 (1): 73–93. Bibcode:1999OLEB...29...73N. doi:10.1023/A:1006515817767. PMID 11536899. S2CID 12289639. 原著 (PDF)喺16 October 2019歸檔. 喺24 June 2008搵到.
- ↑ Davies PC (1996). "The Transfer of Viable Microorganisms Between Planets". 出自 Bock GR, Goode JA (編). Ciba Foundation Symposium 202 – Evolution of Hydrothermal Ecosystems on Earth (And Mars?). Novartis Foundation Symposia.第202卷. pp. 304–14, discussion 314–17. doi:10.1002/9780470514986.ch16. ISBN 9780470514986. PMID 9243022.
- ↑ López-García P, López-López A, Moreira D, Rodríguez-Valera F (July 2001). "Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front". FEMS Microbiology Ecology. 36 (2–3): 193–202. Bibcode:2001FEMME..36..193L. doi:10.1016/s0168-6496(01)00133-7 (失效 1 November 2024). PMID 11451524.
{{cite journal}}
: CS1 maint: DOI inactive as of 11月 2024 (link) - ↑ Karner MB, DeLong EF, Karl DM (January 2001). "Archaeal dominance in the mesopelagic zone of the Pacific Ocean". Nature. 409 (6819): 507–10. Bibcode:2001Natur.409..507K. doi:10.1038/35054051. PMID 11206545. S2CID 6789859.
- ↑ Giovannoni SJ, Stingl U (September 2005). "Molecular diversity and ecology of microbial plankton". Nature. 437 (7057): 343–48. Bibcode:2005Natur.437..343G. doi:10.1038/nature04158. PMID 16163344. S2CID 4349881.
- ↑ DeLong EF, Karl DM (September 2005). "Genomic perspectives in microbial oceanography". Nature. 437 (7057): 336–42. Bibcode:2005Natur.437..336D. doi:10.1038/nature04157. PMID 16163343. S2CID 4400950.
- ↑ Agogué H, Brink M, Dinasquet J, Herndl GJ (December 2008). "Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic" (PDF). Nature. 456 (7223): 788–91. Bibcode:2008Natur.456..788A. doi:10.1038/nature07535. PMID 19037244. S2CID 54566989.
- ↑ Teske A, Sørensen KB (January 2008). "Uncultured archaea in deep marine subsurface sediments: have we caught them all?". The ISME Journal. 2 (1): 3–18. Bibcode:2008ISMEJ...2....3T. doi:10.1038/ismej.2007.90. hdl:10379/14139. PMID 18180743.
- ↑ Lipp JS, Morono Y, Inagaki F, Hinrichs KU (August 2008). "Significant contribution of Archaea to extant biomass in marine subsurface sediments". Nature. 454 (7207): 991–94. Bibcode:2008Natur.454..991L. doi:10.1038/nature07174. PMID 18641632. S2CID 4316347.
- ↑ Danovaro R, Dell'Anno A, Corinaldesi C, Rastelli E, Cavicchioli R, Krupovic M, Noble RT, Nunoura T, Prangishvili D (October 2016). "Virus-mediated archaeal hecatomb in the deep seafloor". Science Advances. 2 (10): e1600492. Bibcode:2016SciA....2E0492D. doi:10.1126/sciadv.1600492. PMC 5061471. PMID 27757416.
- ↑ Liu X, Pan J, Liu Y, Li M, Gu JD (October 2018). "Diversity and distribution of Archaea in global estuarine ecosystems". The Science of the Total Environment. 637–638: 349–358. Bibcode:2018ScTEn.637..349L. doi:10.1016/j.scitotenv.2018.05.016. PMID 29753224. S2CID 21697690.
- ↑ Cabello P, Roldán MD, Moreno-Vivián C (November 2004). "Nitrate reduction and the nitrogen cycle in archaea". Microbiology. 150 (Pt 11): 3527–46. doi:10.1099/mic.0.27303-0. PMID 15528644.
- ↑ Mehta MP, Baross JA (December 2006). "Nitrogen fixation at 92 °C by a hydrothermal vent archaeon". Science. 314 (5806): 1783–86. Bibcode:2006Sci...314.1783M. doi:10.1126/science.1134772. PMID 17170307. S2CID 84362603.
{{cite journal}}
: no-break space character in|title=
at position 24 (help) - ↑ Coolen MJ, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MM, Wakeham SG, 等 (April 2007). "Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: A basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids". Environmental Microbiology. 9 (4): 1001–16. Bibcode:2007EnvMi...9.1001C. doi:10.1111/j.1462-2920.2006.01227.x. hdl:1912/2034. PMID 17359272.
- ↑ Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (August 2006). "Archaea predominate among ammonia-oxidizing prokaryotes in soils". Nature. 442 (7104): 806–09. Bibcode:2006Natur.442..806L. doi:10.1038/nature04983. PMID 16915287. S2CID 4380804.
- ↑ Baker BJ, Banfield JF (May 2003). "Microbial communities in acid mine drainage". FEMS Microbiology Ecology. 44 (2): 139–52. Bibcode:2003FEMME..44..139B. doi:10.1016/S0168-6496(03)00028-X. PMID 19719632.
- ↑ Schimel J (August 2004). "Playing scales in the methane cycle: from microbial ecology to the globe". Proceedings of the National Academy of Sciences of the United States of America. 101 (34): 12400–01. Bibcode:2004PNAS..10112400S. doi:10.1073/pnas.0405075101. PMC 515073. PMID 15314221.
- ↑ Eckburg PB, Lepp PW, Relman DA (February 2003). "Archaea and their potential role in human disease". Infection and Immunity. 71 (2): 591–96. doi:10.1128/IAI.71.2.591-596.2003. PMC 145348. PMID 12540534.
- ↑ Cavicchioli R, Curmi PM, Saunders N, Thomas T (November 2003). "Pathogenic archaea: do they exist?". BioEssays. 25 (11): 1119–28. doi:10.1002/bies.10354. PMID 14579252.
- ↑ Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (April 2004). "Methanogenic Archaea and human periodontal disease". Proceedings of the National Academy of Sciences of the United States of America. 101 (16): 6176–81. Bibcode:2004PNAS..101.6176L. doi:10.1073/pnas.0308766101. PMC 395942. PMID 15067114.
- ↑ Vianna ME, Conrads G, Gomes BP, Horz HP (April 2006). "Identification and quantification of archaea involved in primary endodontic infections". Journal of Clinical Microbiology. 44 (4): 1274–82. doi:10.1128/JCM.44.4.1274-1282.2006. PMC 1448633. PMID 16597851.
- ↑ Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W, Stetter KO, 等 (March 2008). "Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea". Journal of Bacteriology. 190 (5): 1743–50. doi:10.1128/JB.01731-07. PMC 2258681. PMID 18165302.
- ↑ Chaban B, Ng SY, Jarrell KF (February 2006). "Archaeal habitats—from the extreme to the ordinary". Canadian Journal of Microbiology. 52 (2): 73–116. doi:10.1139/w05-147. PMID 16541146.
- ↑ Schink B (June 1997). "Energetics of syntrophic cooperation in methanogenic degradation". Microbiology and Molecular Biology Reviews. 61 (2): 262–80. doi:10.1128/mmbr.61.2.262-280.1997. PMC 232610. PMID 9184013.
- ↑ Lewis WH, Sendra KM, Embley TM, Esteban GF (2018). "Morphology and Phylogeny of a New Species of Anaerobic Ciliate, Trimyema finlayi n. sp., with Endosymbiotic Methanogens". Frontiers in Microbiology. 9: 140. doi:10.3389/fmicb.2018.00140. PMC 5826066. PMID 29515525.
- ↑ Anaerobic ciliates as a model group for studying the biodiversityand symbioses in anoxic environments (PDF) (論文). 2020.
- ↑ Wrede C, Dreier A, Kokoschka S, Hoppert M (2012). "Archaea in symbioses". Archaea. 2012: 596846. doi:10.1155/2012/596846. PMC 3544247. PMID 23326206.
- ↑ Lange M, Westermann P, Ahring BK (February 2005). "Archaea in protozoa and metazoa". Applied Microbiology and Biotechnology. 66 (5): 465–474. doi:10.1007/s00253-004-1790-4. PMID 15630514. S2CID 22582800.
- ↑ van Hoek AH, van Alen TA, Sprakel VS, Leunissen JA, Brigge T, Vogels GD, Hackstein JH (February 2000). "Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates". Molecular Biology and Evolution. 17 (2): 251–258. doi:10.1093/oxfordjournals.molbev.a026304. PMID 10677847.
- ↑ Preston CM, Wu KY, Molinski TF, DeLong EF (June 1996). "A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov". Proceedings of the National Academy of Sciences of the United States of America. 93 (13): 6241–6246. Bibcode:1996PNAS...93.6241P. doi:10.1073/pnas.93.13.6241. PMC 39006. PMID 8692799.
- ↑ Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, 等 (June 2005). "Diversity of the human intestinal microbial flora". Science. 308 (5728): 1635–38. Bibcode:2005Sci...308.1635E. doi:10.1126/science.1110591. PMC 1395357. PMID 15831718.
- ↑ Samuel BS, Gordon JI (June 2006). "A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism". Proceedings of the National Academy of Sciences of the United States of America. 103 (26): 10011–16. Bibcode:2006PNAS..10310011S. doi:10.1073/pnas.0602187103. PMC 1479766. PMID 16782812.
- ↑ Wegley L, Yu Y, Breitbart M, Casas V, Kline DI, Rohwer F (2004). "Coral-associated Archaea". Marine Ecology Progress Series. 273: 89–96. Bibcode:2004MEPS..273...89W. doi:10.3354/meps273089.
- ↑ Chelius MK, Triplett EW (April 2001). "The Diversity of Archaea and Bacteria in Association with the Roots of Zea mays L". Microbial Ecology. 41 (3): 252–263. Bibcode:2001MicEc..41..252C. doi:10.1007/s002480000087. JSTOR 4251818. PMID 11391463. S2CID 20069511.
- ↑ Simon HM, Dodsworth JA, Goodman RM (October 2000). "Crenarchaeota colonize terrestrial plant roots". Environmental Microbiology. 2 (5): 495–505. Bibcode:2000EnvMi...2..495S. doi:10.1046/j.1462-2920.2000.00131.x. PMID 11233158.
- ↑ Gophna U, Charlebois RL, Doolittle WF (May 2004). "Have archaeal genes contributed to bacterial virulence?". Trends in Microbiology. 12 (5): 213–219. doi:10.1016/j.tim.2004.03.002. PMID 15120140.
- ↑ Shiffman ME, Charalambous BM (2012). "The search for archaeal pathogens". Reviews in Medical Microbiology. 23 (3): 45–51. doi:10.1097/MRM.0b013e328353c7c9. ISSN 0954-139X. S2CID 88300156.
- ↑ Breithaupt H (November 2001). "The hunt for living gold. The search for organisms in extreme environments yields useful enzymes for industry". EMBO Reports. 2 (11): 968–971. doi:10.1093/embo-reports/kve238. PMC 1084137. PMID 11713183.
- ↑ 232.0 232.1 Egorova K, Antranikian G (December 2005). "Industrial relevance of thermophilic Archaea". Current Opinion in Microbiology. 8 (6): 649–55. doi:10.1016/j.mib.2005.10.015. PMID 16257257.
- ↑ Synowiecki J, Grzybowska B, Zdziebło A (2006). "Sources, properties and suitability of new thermostable enzymes in food processing". Critical Reviews in Food Science and Nutrition. 46 (3): 197–205. doi:10.1080/10408690590957296. PMID 16527752. S2CID 7208835.
- ↑ Jenney FE, Adams MW (January 2008). "The impact of extremophiles on structural genomics (and vice versa)". Extremophiles. 12 (1): 39–50. doi:10.1007/s00792-007-0087-9. PMID 17563834. S2CID 22178563.
- ↑ Schiraldi C, Giuliano M, De Rosa M (September 2002). "Perspectives on biotechnological applications of archaea". Archaea. 1 (2): 75–86. doi:10.1155/2002/436561. PMC 2685559. PMID 15803645.
- ↑ Norris PR, Burton NP, Foulis NA (April 2000). "Acidophiles in bioreactor mineral processing". Extremophiles. 4 (2): 71–76. doi:10.1007/s007920050139. PMID 10805560. S2CID 19985179.
- ↑ Shand RF, Leyva KJ (2008). "Archaeal Antimicrobials: An Undiscovered Country". 出自 Blum P (編). Archaea: New Models for Prokaryotic Biology. Caister Academic Press. ISBN 978-1-904455-27-1.
延伸閱讀
編輯Howland JL (2000). The Surprising Archaea: Discovering Another Domain of Life. Oxford University. ISBN 978-0-19-511183-5.
Martinko JM, Madigan MT (2005). Brock Biology of Microorganisms (第11版). Englewood Cliffs, N.J: Prentice Hall. ISBN 978-0-13-144329-7.
Garrett RA, Klenk H (2005). Archaea: Evolution, Physiology and Molecular Biology. WileyBlackwell. ISBN 978-1-4051-4404-9.
Cavicchioli R (2007). Archaea: Molecular and Cellular Biology. American Society for Microbiology. ISBN 978-1-55581-391-8.
Blum P, 編 (2008). Archaea: New Models for Prokaryotic Biology. Caister Academic Press. ISBN 978-1-904455-27-1.
Lipps G (2008). "Archaeal Plasmids". Plasmids: Current Research and Future Trends. Caister Academic Press. ISBN 978-1-904455-35-6.
Sapp J (2009). The New Foundations of Evolution: On the Tree of Life. New York: Oxford University Press. ISBN 978-0-19-538850-3.
Schaechter M (2009). Archaea (Overview) in The Desk Encyclopedia of Microbiology (第2版). San Diego and London: Elsevier Academic Press. ISBN 978-0-12-374980-2.
外部連結
編輯通用
編輯海洋古菌 – E.F. DeLong, ASM News, 2003
分類
編輯古菌域嘅屬 – 具有命名地位嘅原核生物名稱列表
鳥槍法測序揾到納米生物 – ARMAN 古菌群嘅發現
基因組學
編輯古菌基因組嘅比較分析 互聯網檔案館嘅歸檔,歸檔日期16 February 2013. (喺 美國能源部 IMG 系統)
Template:Microorganisms Template:Archaea classification Template:Extremophile Template:Life on Earth Template:Organisms et al.