喺數論中,全循環質數[1] :166,又叫長質數,係指一個質數p,令分數1/p嘅循環節長度比質數少1,更精確地講,全循環質數係指一個質數p,喺一個已知底數為b嘅進位制下,喺下面算式中可以得出一個循環數嘅質數:

若果p係11,b係2,所得嘅數字0001011101係循環數

0001011101 × 1 = 0001011101
0001011101 × 2 = 0010111010
0001011101 × 3 = 0100010111
0001011101 × 4 = 0101110100
0001011101 × 5 = 0111010001
0001011101 × 6 = 1000101110
0001011101 × 7 = 1010001011
0001011101 × 8 = 1011101000
0001011101 × 9 = 1101000101
0001011101 × 10 = 1110100010

,循環節長度係10,比11少1,因此11係二進位嘅全循環質數。

十進位中嘅全循環質數有:

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229 , 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593,... (OEIS數列A001913

參考

編輯
  1. Dickson, Leonard E., 1952, History of the Theory of Numbers, Volume 1, Chelsea Public. Co.
  1. Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, 1996.
  2. Francis, Richard L.; "Mathematical Haystacks: Another Look at Repunit Numbers"; in The College Mathematics Journal, Vol. 19, No. 3. (May, 1988), pp. 240–246.

睇埋

編輯

出面網頁

編輯