全循環質數
喺數論中,全循環質數[1] :166,又叫長質數,係指一個質數p,令分數1/p嘅循環節長度比質數少1,更精確地講,全循環質數係指一個質數p,喺一個已知底數為b嘅進位制下,喺下面算式中可以得出一個循環數嘅質數:
若果p係11,b係2,所得嘅數字0001011101係循環數
- 0001011101 × 1 = 0001011101
- 0001011101 × 2 = 0010111010
- 0001011101 × 3 = 0100010111
- 0001011101 × 4 = 0101110100
- 0001011101 × 5 = 0111010001
- 0001011101 × 6 = 1000101110
- 0001011101 × 7 = 1010001011
- 0001011101 × 8 = 1011101000
- 0001011101 × 9 = 1101000101
- 0001011101 × 10 = 1110100010
而,循環節長度係10,比11少1,因此11係二進位嘅全循環質數。
十進位中嘅全循環質數有:
7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229 , 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593,... (OEIS數列A001913)
參考
編輯- ↑ Dickson, Leonard E., 1952, History of the Theory of Numbers, Volume 1, Chelsea Public. Co.
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, 1996.
- Francis, Richard L.; "Mathematical Haystacks: Another Look at Repunit Numbers"; in The College Mathematics Journal, Vol. 19, No. 3. (May, 1988), pp. 240–246.
睇埋
編輯出面網頁
編輯- Weisstein, Eric W., "Artin's Constant" - MathWorld.(英文)
- Weisstein, Eric W., "Full Reptend Prime" - MathWorld.(英文)