結理論入邊,假平結[1]英文granny knot)係兩個相同嘅三葉結連通和形成嘅複合結,佢同平結(square knot)好似,平結都係兩個三葉結加埋,不過就係相反嘅三葉結。因為三葉結係最簡單嘅非平凡結,所以假平結同平結就係最簡單嘅複合結。

假平結
日常名假平結
交叉數6
棍數8
A–B 表示法
其他
交錯, 複合, 三色
3D圖像

假平結係日常入邊嘅假平結嘅數學版本。

構作

編輯

假平結可以用兩個三葉結整出嚟,呢兩個三葉結一定要係同方向,即係同為左手(left-handed)或者同為右手(right-handed)。將兩個三葉結剪開,然後喺剪開嗰個位將兩個三葉結黐埋,得出嚟嘅就係假平結。

喺呢度重要嘅一點係,兩個三葉結一定要係一樣,如果用咗兩個唔同嘅三葉結,即係一左一右嘅話,出嚟嘅結果就係平結。

性質

編輯

假平結嘅交叉數係6,係複合結之中最細嘅。同平結唔同,假平結唔係ribbon knot或者slice knot

假平結嘅亞歷山大多項式(Alexander polynomial)係 ,其實即係三葉結嘅平方。同樣道理,假平結嘅康威多項式(Conway polynomial)係 。兩個都係同平結一樣。但係,(右手)假平結嘅鍾斯多項式(Jones polynomial)係 ,係(右手)三葉結嘅平方,同平結嘅唔同。

假平結嘅結羣 [2]。呢個羣同平結嘅結羣同構,係最簡單嘅唔同結有同樣結羣嘅例子。

參考資料

編輯
  1. granny knot - 假平結;外行平結terms.naer.edu.tw。喺2022-04-15搵到
  2. Weisstein, Eric W., "Granny Knot" - MathWorld.(英文)
  • А. Б. Сосинский (2005). Узлы. Хронология математической теории. Москва: МЦНМО. p. 58. ISBN 5-94057-220-0.
  • С. В. Дужин, С. В. Чмутов (1999). Математическое просвещение. Сер. 3. pp. 72–73.