拉普拉斯算子,係向量微積分裏面嘅一個算子,佢可以作用喺一個純量函數或者向量函數都得。佢嘅表達式係 ∇ 2 {\displaystyle \nabla ^{2}} 。
對於純量函數,拉普拉斯算子嘅定義係嗰個函數梯度嘅散度,即係 ∇ ⋅ ∇ = ∇ 2 {\displaystyle \nabla \cdot \nabla =\nabla ^{2}} 。作用喺純量函數 f {\displaystyle f} 上面,就係 ∇ ⋅ ∇ f = ∇ 2 f {\displaystyle \nabla \cdot \nabla f=\nabla ^{2}f} 。跟據 ∇ {\displaystyle \nabla } 本身嘅定義,可以得到:
∇ 2 {\displaystyle \nabla ^{2}}
= ∇ ⋅ ∇ {\displaystyle =\nabla \cdot \nabla }
= ( i ∂ ∂ x + j ∂ ∂ y + k ∂ ∂ z ) ⋅ ( i ∂ ∂ x + j ∂ ∂ y + k ∂ ∂ z ) {\displaystyle =(\mathbf {i} {\frac {\partial }{\partial x}}+\mathbf {j} {\frac {\partial }{\partial y}}+\mathbf {k} {\frac {\partial }{\partial z}})\cdot (\mathbf {i} {\frac {\partial }{\partial x}}+\mathbf {j} {\frac {\partial }{\partial y}}+\mathbf {k} {\frac {\partial }{\partial z}})}
= ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 {\displaystyle ={\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}}
所以 ∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 {\displaystyle \nabla ^{2}f={\frac {\partial ^{2}f}{\partial x^{2}}}+{\frac {\partial ^{2}f}{\partial y^{2}}}+{\frac {\partial ^{2}f}{\partial z^{2}}}} 。
至於向量函數 v = v x i + v y j + v z k {\displaystyle \mathbf {v} =v_{x}\mathbf {i} +v_{y}\mathbf {j} +v_{z}\mathbf {k} } ,拉普拉斯算子都可以用同樣嘅方法作用喺佢身上,只不過剩係作用係每個拆出嚟嘅基向量前面嘅函數,即係:
∇ 2 v {\displaystyle \nabla ^{2}\mathbf {v} }
= ∇ 2 v x i + ∇ 2 v y j + ∇ 2 v z k {\displaystyle =\nabla ^{2}v_{x}\mathbf {i} +\nabla ^{2}v_{y}\mathbf {j} +\nabla ^{2}v_{z}\mathbf {k} }
= ( ∂ 2 v x ∂ x 2 + ∂ 2 v x ∂ y 2 + ∂ 2 v x ∂ z 2 ) i + ( ∂ 2 v y ∂ x 2 + ∂ 2 v y ∂ y 2 + ∂ 2 v y ∂ z 2 ) j + ( ∂ 2 v z ∂ x 2 + ∂ 2 v z ∂ y 2 + ∂ 2 v z ∂ z 2 ) k {\displaystyle =({\frac {\partial ^{2}v_{x}}{\partial x^{2}}}+{\frac {\partial ^{2}v_{x}}{\partial y^{2}}}+{\frac {\partial ^{2}v_{x}}{\partial z^{2}}})\mathbf {i} +({\frac {\partial ^{2}v_{y}}{\partial x^{2}}}+{\frac {\partial ^{2}v_{y}}{\partial y^{2}}}+{\frac {\partial ^{2}v_{y}}{\partial z^{2}}})\mathbf {j} +({\frac {\partial ^{2}v_{z}}{\partial x^{2}}}+{\frac {\partial ^{2}v_{z}}{\partial y^{2}}}+{\frac {\partial ^{2}v_{z}}{\partial z^{2}}})\mathbf {k} }
拉普拉斯算子喺唔同科學範疇裏面牽涉到偏微分方程嘅定律就會出現,尤其係物理學。其中一個例子就係波動方程:
∂ 2 u ∂ t 2 = c 2 ∇ 2 u {\displaystyle {\frac {\partial ^{2}u}{\partial t^{2}}}=c^{2}\nabla ^{2}u}