若果一個正整數 n 嘅所有因數調和平均整數n 就稱為歐爾調和數(Harmonic divisor number)。佢又叫歐爾數(Ore number),因為佢最先由奧斯田歐爾(Øystein Ore)嘅 1948 年論文裏頭提出。

首幾個調和數系: 1628140270496,672,1638,2970,6200,8128,8190 (OEIS數列A001599

所有完全數都係調和數。暫時除咗 1 之外,並冇發現奇調和數。1972年,W. H. Mills 證明除咗 1 之外,內冇奇調和數。

調和數 6 有四個因數 1, 2, 3, 6,佢哋嘅調和平均值係整數:

 


140 嘅因數有 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140,佢哋嘅調和平均值係:

 

5 係整數,所以 140 係歐爾調和數。