阿基米德中點定理

阿基米德中點定理Archimedes' Midpoint Theorem)說明:上面有兩點 A 同 B,M 係弧 AB 嘅中點,隨意揀圓上嘅一點 C,D 係 AC上嘅點使到

若果 M 同 C 喺弦 AB 異側,即係 AD = DC + BC;

若果 M 同 C 喺弦 AB 同側,即係 AD = DC - CB。


證明

編輯

若果係同側:喺線段   上取點   ,使到  ,由於  ,有

 。又因為 M 係弧   嘅中點,所以  

同時由圓周角定理得知:
  
所以  
所以  
所以  
所以    ,命題得到咗證實。


若果係異側:喺線段 AD 延長線上取點 X,使到 DX = AD。

因為 M 係弧 AB 嘅中點,所以  
又因為四邊形 AMBC 係圓入面接四邊形,所以延長 CB 至 P,則  
但係 AD = DX ,所以   係直角,所以    
又 CM = CM, 所以  
承上,所以 CX = CB;所以 AD = DC - CX = DC - CB。

外部連結

編輯