友誼數
喺數論入面,友誼數係指兩個正整數 同埋 滿足 嘅關係,其中 係因數函數,咁嘅話佢哋就係「朋友」,呢兩個整數互為友誼數。
友誼數為傳遞關係,若果m同n係友誼數,n同p係友誼數,噉m同p就一定係友誼數。
所有已知嘅友誼數有6、12、24、28、30、…(OEIS:A074902,按σ(n)/n相同嘅組對排列:OEIS:A050973)
確定唔係友誼數嘅數就叫孤獨數。但係有啲數未能證明佢係咪孤獨數,例如10。
例如
編輯再舉一個例子,30同140組成友好對,因為30同140具有相同嘅「豐度」:
數字2480、6200同40640都係呢個「俱樂部」嘅成員,因為佢哋各自嘅「豐度」都係12/5。
對於奇數數字友好嘅示例,請考慮135同819(「豐度」16/9)。仲存在一奇一偶「友好」嘅情況,例如42同544635(「豐度」16/7)。奇數個「朋友」可能細過偶數嗰個,例如84729645同155315394(「豐度」896/351)。
平方數可以係友好數,例如693479556(平方數26334)同8640都具有「豐度」127/36(呢個示例已由Dean Hickerson證明),立方數都可以係友好數,例如3375(立方數15)同6975都具有「豐度」416/225。
較細嘅n
編輯藍色數字被證明係友好嘅(OEIS數列A074902),紅色數字被證明係孤獨嘅(OEIS數列A095739),如果n同 互質,咁佢就係孤獨數(OEIS數列A014567),不過呢度未將佢油成深色。其他號碼嘅狀態未知,並且高亮黃色顯示。
n | n | n | n | n | ||||||||||||||
1 | 1 | 1 | 37 | 38 | 38/37 | 73 | 74 | 74/73 | 109 | 110 | 110/109 | 145 | 180 | 36/29 | ||||
2 | 3 | 3/2 | 38 | 60 | 30/19 | 74 | 114 | 57/37 | 110 | 216 | 108/55 | 146 | 222 | 111/73 | ||||
3 | 4 | 4/3 | 39 | 56 | 56/39 | 75 | 124 | 124/75 | 111 | 152 | 152/111 | 147 | 228 | 76/49 | ||||
4 | 7 | 7/4 | 40 | 90 | 9/4 | 76 | 140 | 35/19 | 112 | 248 | 31/14 | 148 | 266 | 133/74 | ||||
5 | 6 | 6/5 | 41 | 42 | 42/41 | 77 | 96 | 96/77 | 113 | 114 | 114/113 | 149 | 150 | 150/149 | ||||
6 | 12 | 2 | 42 | 96 | 16/7 | 78 | 168 | 28/13 | 114 | 240 | 40/19 | 150 | 372 | 62/25 | ||||
7 | 8 | 8/7 | 43 | 44 | 44/43 | 79 | 80 | 80/79 | 115 | 144 | 144/115 | 151 | 152 | 152/151 | ||||
8 | 15 | 15/8 | 44 | 84 | 21/11 | 80 | 186 | 93/40 | 116 | 210 | 105/58 | 152 | 300 | 75/38 | ||||
9 | 13 | 13/9 | 45 | 78 | 26/15 | 81 | 121 | 121/81 | 117 | 182 | 14/9 | 153 | 234 | 26/17 | ||||
10 | 18 | 9/5 | 46 | 72 | 36/23 | 82 | 126 | 63/41 | 118 | 180 | 90/59 | 154 | 288 | 144/77 | ||||
11 | 12 | 12/11 | 47 | 48 | 48/47 | 83 | 84 | 84/83 | 119 | 144 | 144/119 | 155 | 192 | 192/155 | ||||
12 | 28 | 7/3 | 48 | 124 | 31/12 | 84 | 224 | 8/3 | 120 | 360 | 3 | 156 | 392 | 98/39 | ||||
13 | 14 | 14/13 | 49 | 57 | 57/49 | 85 | 108 | 108/85 | 121 | 133 | 133/121 | 157 | 158 | 158/157 | ||||
14 | 24 | 12/7 | 50 | 93 | 93/50 | 86 | 132 | 66/43 | 122 | 186 | 93/61 | 158 | 240 | 120/79 | ||||
15 | 24 | 8/5 | 51 | 72 | 24/17 | 87 | 120 | 40/29 | 123 | 168 | 56/41 | 159 | 216 | 72/53 | ||||
16 | 31 | 31/16 | 52 | 98 | 49/26 | 88 | 180 | 45/22 | 124 | 224 | 56/31 | 160 | 378 | 189/80 | ||||
17 | 18 | 18/17 | 53 | 54 | 54/53 | 89 | 90 | 90/89 | 125 | 156 | 156/125 | 161 | 192 | 192/161 | ||||
18 | 39 | 13/6 | 54 | 120 | 20/9 | 90 | 234 | 13/5 | 126 | 312 | 52/21 | 162 | 363 | 121/54 | ||||
19 | 20 | 20/19 | 55 | 72 | 72/55 | 91 | 112 | 16/13 | 127 | 128 | 128/127 | 163 | 164 | 164/163 | ||||
20 | 42 | 21/10 | 56 | 120 | 15/7 | 92 | 168 | 42/23 | 128 | 255 | 255/128 | 164 | 294 | 147/82 | ||||
21 | 32 | 32/21 | 57 | 80 | 80/57 | 93 | 128 | 128/93 | 129 | 176 | 176/129 | 165 | 288 | 96/55 | ||||
22 | 36 | 18/11 | 58 | 90 | 45/29 | 94 | 144 | 72/47 | 130 | 252 | 126/65 | 166 | 252 | 126/83 | ||||
23 | 24 | 24/23 | 59 | 60 | 60/59 | 95 | 120 | 24/19 | 131 | 132 | 132/131 | 167 | 168 | 168/167 | ||||
24 | 60 | 5/2 | 60 | 168 | 14/5 | 96 | 252 | 21/8 | 132 | 336 | 28/11 | 168 | 480 | 20/7 | ||||
25 | 31 | 31/25 | 61 | 62 | 62/61 | 97 | 98 | 98/97 | 133 | 160 | 160/133 | 169 | 183 | 183/169 | ||||
26 | 42 | 21/13 | 62 | 96 | 48/31 | 98 | 171 | 171/98 | 134 | 204 | 102/67 | 170 | 324 | 162/85 | ||||
27 | 40 | 40/27 | 63 | 104 | 104/63 | 99 | 156 | 52/33 | 135 | 240 | 16/9 | 171 | 260 | 260/171 | ||||
28 | 56 | 2 | 64 | 127 | 127/64 | 100 | 217 | 217/100 | 136 | 270 | 135/68 | 172 | 308 | 77/43 | ||||
29 | 30 | 30/29 | 65 | 84 | 84/65 | 101 | 102 | 102/101 | 137 | 138 | 138/137 | 173 | 174 | 174/173 | ||||
30 | 72 | 12/5 | 66 | 144 | 24/11 | 102 | 216 | 36/17 | 138 | 288 | 48/23 | 174 | 360 | 60/29 | ||||
31 | 32 | 32/31 | 67 | 68 | 68/67 | 103 | 104 | 104/103 | 139 | 140 | 140/139 | 175 | 248 | 248/175 | ||||
32 | 63 | 63/32 | 68 | 126 | 63/34 | 104 | 210 | 105/52 | 140 | 336 | 12/5 | 176 | 372 | 93/44 | ||||
33 | 48 | 16/11 | 69 | 96 | 32/23 | 105 | 192 | 64/35 | 141 | 192 | 64/47 | 177 | 240 | 80/59 | ||||
34 | 54 | 27/17 | 70 | 144 | 72/35 | 106 | 162 | 81/53 | 142 | 216 | 108/71 | 178 | 270 | 135/89 | ||||
35 | 48 | 48/35 | 71 | 72 | 72/71 | 107 | 108 | 108/107 | 143 | 168 | 168/143 | 179 | 180 | 180/179 | ||||
36 | 91 | 91/36 | 72 | 195 | 65/24 | 108 | 280 | 70/27 | 144 | 403 | 403/144 | 180 | 546 | 91/30 |
大嘅友誼數群
編輯若果三個或三個以上嘅正整數,其因數函數除以自身嘅比值相等,噉呢啲正整數形成友誼數群(Friendly number club),目前仲未知係咪有由無限多個正整數組成嘅友誼數群。完全數嘅因數函數係自身嘅兩倍,因此所有完全數形成一個友誼數群,推測應該會有無限多個完全數(至少會同梅森質數嘅數量一樣多),但未被證明。