對稱
概論
編輯睇埋:幾何學
嚴格噉講,如果話一嚿數學物體係對稱嘅,意思即係話嚿物體經歷咗反射同轉動等嘅轉換,嚿物體都唔會變。舉例說明,鏡射係最基本嗰種對稱,指一嚿物體就算經歷咗反射(reflection)都唔會變樣[1][2]:簡化噉講,反射可以想像成
- 攞一個形狀(例如下圖嘅三角形 )同一條線(同一幅圖條 Y 軸),條線就叫做反射軸;
- 喺條線嘅另一邊建構個新嘅形狀(三角形 );
- 原本個形狀嘅每一點 ,都喺新形狀度有個對應點 ,而且
- 是但攞對噉嘅兩點嚟睇,「 同反射軸之間嘅距離」等同「 同反射軸之間嘅距離」。
想像有件物體經歷咗反射,佢反射前個形狀反射後嘅形狀完全一樣(除咗位置之外),噉件物體就算係具有鏡射嘅對稱特性。進階啲嘅對稱分析,仲有講到轉動對稱(rotational symmetry;指件物體就算經歷若干角度嘅轉動都唔會變樣,例子可以睇吓三曲腿圖嘅 3-重轉動對稱)等嘅進階對稱類型。
對稱呢個概念,視覺藝術成日都會用到-好多人都認為對稱嘅物件好有美感,例如建築設計就好興將啲建築物設計到左右對稱噉嘅樣[3]。
抽象對稱
編輯對稱唔一定係具象嘅,數學上,對稱性其實係講,當一樣嘢,佢嘅某啲方面改變,而另一啲方面維持唔變。群論就係研究對稱性嘅數學分支。
睇埋
編輯攷
編輯