頭版
隨機
附近
簽到
自定喜好
捐畀維基百科
關於維基百科
免責聲明
搵嘢
決定系數
其他文嘅版本
監視
改
決定系數
(
coefficient of determination
)喺
統計學
上反映一個
應變數
嘅
變異數
有幾多可以由啲
自變數
預測;最廣義上嘅定義如下:
R
2
=
1
−
S
S
r
e
s
S
S
t
o
t
{\displaystyle R^{2}=1-{SS_{\rm {res}} \over SS_{\rm {tot}}}\,}
當中
S
S
r
e
s
{\displaystyle SS_{\rm {res}}}
可以想像成做咗
迴歸分析
後嘅
殘差平方和
(反映「用個模型得出嘅預測值同實際值傾向差幾遠」),而
S
S
t
o
t
{\displaystyle SS_{\rm {tot}}}
係指
變異數
同
樣本大細
相乘;即係話如果個模型做到完美預測,噉
S
S
r
e
s
=
0
{\displaystyle SS_{\rm {res}}=0}
,
R
2
=
1
{\displaystyle R^{2}=1}
。
呢篇
統計學
文係
楔
位文。歡迎幫維基百科
擴寫佢
。
睇
•
論
•
改
•
歷