無理數
(由非有理數跳轉過嚟)
數學嘅數 |
基本 |
|
延伸 |
其他 |
圓周率 π = 3.141592653… |
無理數(英文:irrational numbers,符號 、或者),即係唔係有理數嘅實數,唔能夠寫成兩個整數嘅比。若果將佢寫成小數形式,小數點之後嘅數字就會有無限咁多個,而且唔會循環。常見嘅無理數有大部分嘅平方根、同(其中後兩者同時係超越數)等。無理數嘅另一個特徵係無限長嘅連分數表達式。
無理數入面,唔能夠用整係數多項式方程表達嘅數叫做超越數。
傳說中,無理數最早係由畢達哥拉斯學派弟子希伯斯發現。佢用幾何方法證明無辦法用整數以及分數嚟表示。而畢達哥拉斯深信任意數都可以用整數同分數嚟表示,唔相信無理數嘅存在。但係佢始終證明唔到唔係無理數,後來希伯斯將無理數透露畀外人知道,佢本人因為呢次知識外泄觸犯學派章程而俾人處死,罪名等同於「瀆神」。
例子
編輯- 開方:
- 對數:
- 圓周率:
證明
編輯- 證明 係無理數:先假設佢係有理數,就可以寫做最簡分數
- 由於 互質,所以 都係互質。因為 係整數,所以
- 得到 而 要係整數,但冇整數嘅平方係 ,所以矛盾,即係假設唔成立,所以 係無理數。
唔知係咪無理數嘅數
編輯對於非零整數 及 ,唔知 係唔係無理數。
我哋亦都唔知道 , , 或者 歐拉-馬歇羅尼常數 γ 係咪無理數。
無理數集嘅特性
編輯無理數集係不可數集(因有理數集係可數而實數集係不可數嘅)。無理數集係一個唔完備嘅拓撲空間,佢係同所有正數數列嘅集拓撲同構嘅,當中嘅同構映射係無理數嘅連分數開展。因而Baire category theorem可以應用喺無數間嘅拓撲空間上。