實數粵拼sat6 sou3,Real numbers)係指可以連續噉喺數線上面表達出嚟嘅數,另一個講法係可以寫做(可能無限長嘅)小數嘅數。

用嚟表示「所有實數組成嘅集合」嘅符號:粗體R

實數域係個完備有序域(complete ordered field),係有理數域嘅完備化(completion),係複數域子域(實數就係虛部(imaginary part)係嘅複數);實數可以用戴德金分割(Dedekind cut)定義;每個實數都係一列有理數嘅極限,直觀、應用上,一個實數可以用有限或者無限嘅小數表示。數學家會用「」嚟表示實數集,即係所有實數。

實數包含有理數之外嘅數叫無理數,包括圓周率等等。

實數係日常生活都會見到嘅數字,所以通常嚟講,多數會直接用數字嚟形容實數。

數學
基本

延伸

其他

圓周率 π = 3.141592653…
自然對數嘅底 e = 2.718281828…
虛數單位 i = 
無窮大量 

代數性質

 包括咗十條對應加法乘法嘅代數性質。頭四條係對應加法,中間四條係對應乘法,最後兩條係講加法同乘法之間嘅關係。

  1.  。意思係,加法次序唔影響結果。
  2.  。意思係,三個實數嘅加法次序唔影響結果。
  3.  使到 。意思係,任何嘢加零,都唔會改變原本嗰樣嘢。而呢個零係一定喺 入面。
  4. 每一個對應嘅  使到 。意思係,任何一個數,都會搵到一個對應嘅數,兩個加埋會變做零。
  5.  。意思係,乘法次序唔影響結果。
  6.  。意思係,三個實數嘅乘法次序唔影響結果。
  7.  使到 。意思係,一定有一個「一」係 入面,令到任何嘢乘佢都係等於自己。
  8. 每一個對應嘅非零  使到 。意思係,一個實數一定會有一個對應嘅實數,之後佢哋兩個乘埋就係一。
  9.  同埋 
  10.  

代數性質嘅推論

推論一

如果有兩個數字 係符合 ,咁即係可以得出 

證明:

 

以上嘅證明只可以利用代數性質嘅十條定理嚟做,唔可以用平時處理加乘嘅習慣嚟做。

呢個證明嘅意義,係證明只有零先可以做到上面題及嘅嘢。

推論二

如果有兩個數字 係符合 同埋 ,咁即係得出 

證明:

 

同一個原理,唔可以用平時嘅習慣處理。

呢個證明證明,只有一先可以做到上面題及嘅嘢。

推論三

如果 ,咁樣 

證明:

 

再利用推論一嘅結果, 

呢個證明嘅意義在於,佢證明咗咩嘢乘零都會等於零。

推論四

如果 符合 同埋 ,咁得出 

證明:

 

就係因為呢個證明,先可以進行到除法

推論五

如果 符合 ,之後得出 或者 

證明:

假設 。(想要證出 。)

 

排序性質

內文:不等式

排序性質(Order Properties)係 其中一個性質。佢係嚟自於三叉性質(Trichotomy Proporties),就係因為三叉定理, 先會有不等式。

三叉性質

考慮  嘅一個子集, 係一個整實數嘅子集,然後 符合以下三項特性:

  • 如果 ,咁樣 
  • 如果 ,咁樣 
  • 所有 入面嘅元素,叫 ,都係必定符合以下其中一項。
    •  
    •  
    •  

因為呢個三叉性質, 入面嘅數字可以分做正數、負數同埋零。就係因為噉,所以產生咗不等式。從而 入面嘅數字有大細之分。

完全性質

內文:界限 (數學)

完全性質(Completeness Property)係 嘅最終性質,意思係「 係俾數字填滿」。舉個例,喺  中間有無限咁多個數字。換句話講,你唔會搵到有兩個數字之間係無數字。

完全性質可以由好多唔同方面去證明,其中一個係嚟自完備。完全性質指明:「任何一個實數集,如果佢有上限,就一定有一個最小上限。」因為咁,亦到有人叫完全性質做「最小上限性質」(Supremum Property)。

睇埋